
Yet Another Blockchain-based Privacy-friendly Social
Network

Lars Andreassen Jaatun, Anders Ringen and Martin Gilje Jaatun
IDE

University of Stavanger, Norway
lars@jaatun.no

Abstract—Current social media platforms suffer from
the fact that ownership of personal data is transferred
to the owner of the network the moment you post it.
This paper demonstrates that it is possible to create
and maintain a social network using Hyperledger Fabric,
where personal data is protected from users that should
not have it, and all operations on data is recorded in
the ledger, so you can audit how your data has been
used by others, even the owner of the social network.

Index Terms—Social network, security, privacy,
blockchain, DLT

I. Introduction
Social media today allows you to upload, share and

comment on content of all kinds, whether it be a famous
actor’s bad take on proper etiquette or the latest arrest
by your local police. When you post something on a social
media platform, you essentially donate a whole load of
personal data to the owner of the social medium. After
you post something, there is no telling what happens to
the data. Even though a user of a social network should
own their own data, ownership is transferred to the owner
of the network the moment you post it.

Our solution [1] uses blockchain technology to enable
the tracking of user information. There are aspects of
blockchain that can provide solutions to problems with
regular centralized social apps. Blockchain technology can
verify the origin of data, and restrict unauthorized access.
This is due to the fact that all operations on assets stored
in the blockchain are recorded in the ledger as transactions,
and can therefore be audited. We have created chaincode
that can interact with the ledger to read both historical
information and the current state of the ledger. Ledger
data is fetched to a mobile application written in react-
native through an API that interfaces with the network.
This enables users to track how their data travels through
the network, and who has access to your posts.

The remainder of this paper is structured as follows:
Section II describes relevant background, and Section III
explores existing approaches to our challenge. Section
IV describes the chosen project design. Section V is an
evaluation of the final product, and Section VI discusses
the choices and strategies employed in the project. Section
VII proposes further work, and Section VIII concludes the
paper.

II. Background
A. Smart Contracts

Within blockchain technology, one of the most attractive
points for business applications are smart contracts. They
enable businesses to write code instead of physical contracts,
and these coded contracts are automatically fulfilled when
conditions agreed upon by both parties are fulfilled. This
has the potential to decrease costs for both parties, as well
as time spent on bureaucracy. This however is not the only
use case for smart contracts [2].

As well as being used for legal contracts between
corporations, smart contracts can be applied in numerous
fashions within blockchain networks to run distributed
applications on multiple clients.

Smart contracts are not limited to transferring assets (e.g.
cryptocurrency) from one party to the next, but can also
be used to change states of programmatic objects defined
within an application. A good example of this can be found
in the hyperledger fabric documentation [3]. They describe
a car ownership smart contract. In the application, there
are multiple cars owned by different people, person A and
person B. Person A initiates a transaction to buy a car, and
person B initiates a transaction to sell this car to person
A. The smart contract takes the inputs and completes the
trade by changing the state of the car object to reflect that
it was sold to person A, all without making any physical
transfers between users of the application.

B. Hyperledger Fabric
Hyperledger Fabric (HLF) is an open source project

created to enable blockchain technology for use in a business
context with strict requirements on privacy, confidentiality
and auditability. These concepts are traditionally difficult
to combine within the same project. Nevertheless, the
project turned out to become quite successful [4]. Unlike
most cryptocurrency blockchain networks, HLF is a permis-
sioned network, requiring participants to be authenticated
to join. HLF networks are built up of channels. Channels
are separate sections of the network with their own ledger
and their own members independent of the other channels
in the network. Different members have different privileges
depending on the role they have been assigned in the
network, such as administrators with permissions to change
configuration options and commit transactions, or members

Author version. Presented at 2022 IEEE International Conference on Cloud Computing 
Technology and Science (CloudCom). Published version available at 
https://ieeexplore.ieee.org/document/10005409 - Copyright (c) 2022 IEEE



that have read-only access. Nodes that act as access portals
to the channels for the members are known as peers, and
they too have roles defined by the configuration that differ
from the roles given to users.

1) Configuration: HLF is configurable to a large degree.
One HLF network will most likely be different from any
other network you can find. The configuration options range
from endorsement policies within a channel, to orderer
configuration, whether there are many orderers or a single
orderer per channel, and how many channels you want
for your network. The configuration isn’t static however;
if you have the right permissions (i.e., you are a channel
administrator) you can send a proposal for a configuration
change, and the change will be accepted depending on the
existing policies.

2) Endorsement Policy: The endorsement policy de-
scribes which members from which organizations in the
channel must "endorse" or approve smart contract trans-
actions [5]. If the transaction is not endorsed as required,
the transaction is rejected.

3) Channel Configuration: The channel configuration
is stored in a collection of transactions that is normally
abbreviated as configtx [6]. The channel configuration
contains settings for the organizations present in the
channel, for the peers that will participate from the different
organizations, as well as configuration for the ordering
service in the channel.

4) The Ordering Service: Permissionless blockchain
networks typically have consensus mechanisms that not
only require the participation of a large proportion of
network members, but also take time, are very power-
hungry, and typically result in some nodes doing a lot
of work for no payoff. HLF instead uses orderer nodes
for ordering and assembling blocks that can be added
to the blockchain. A group of orderer nodes form an
ordering service, that in addition to assembling blocks
to the blockchain manage basic access control for channels,
and enforce policies for validation of transactions created
by the administrators of the organizations participating in
the network [7]. When the ordering service receives enough
transaction proposals that are endorsed according to the
endorsement policy to fulfill the minimum requirements
to constitute a block, it packages it into a block which
is then distributed to all peers in the channel. Using an
ordering service instead of using all peers for endorsement
and ordering of transactions results in higher throughput
of transactions, as well as completely avoiding forks in the
ledger. As with all other nodes, orderers are owned by the
organizations participating in the channel.

HLF supports multiple protocols for consensus among
multiple ordering nodes, but recommends the use of the
Raft protocol, due to it being simpler to set up and manage
for network architects [7]. The implementation is crash fault
tolerant, which means that the service can reach consensus
even if some orderer nodes fail, but it is not Byzantine
fault tolerant [8], which means the service cannot reach
(reliable) consensus with malicious nodes in the ordering

service. Therefore one should avoid sharing a channel with
untrusted organizations.

5) Identity: Identity in HLF is most commonly managed
using digital identities in the form of digital certificates
issued by a trusted certificate authority (CA). Fabric
provides binaries for a certificate authority called fabric-CA.
Within channels, there are membership service providers
that decide what certificates have access to the ledger.
The HLF documentation likens the relationship between
certificate authorities and membership service providers to
credit cards and credit card terminals, respectively. The
example is that some card terminals may accept only Visa,
while others only American Express, and others again may
accept both American Express as well as Visa [9].

6) Smart Contracts in HLF: HLF distinguishes between
smart contracts and chaincode in the documentation [3].
Chaincode is used interchangeably with the word smart
contract, but they have slightly different meanings. A smart
contract is a collection of functions that carry out terms
agreed upon by all parties participating in the transaction.
A chaincode on the other hand is a package of multiple
smart contracts, and is what you deploy to a channel.

III. Existing Approaches
There are currently multiple social networks that

tout a blockchain-backed technology stack. Steemit [10],
Somee [11] and Sapien [12] are examples of social networks
that are all based on blockchain technology. While Steemit
and Sapien seem to be reputable, or at the very least have
good intentions, there is evidence pointing towards Somee
being a scam [13]. This is also important to showcase
because of the prevalence of cryptocurrency related scams
based on encouraging large investments into the product
while promising huge payouts, only to liquidate their
own (often substantial) stake, causing the value to drop
significantly. Steem, Sapien and Somee all have the same
focus which is the monetization of content through their
own cryptocurrency.

Both Sapien and Steemit boast a virtually censorship-
free social network as an alternative to censorship-heavy
centralized platforms. However, in their respective white
papers outlining the technology stack, there is barely a
mention of privacy, or a user’s right to their own data [14],
[15]. While Sapien’s marketing lead of 2020, Jonathan
Goodwin, wrote a piece on how users are entitled to their
own data [16], the piece is accompanied by a disclaimer
that clarifies that the piece does not reflect the official
position of the Sapien social network, even though it is
written to sound like it is. So while the platforms may
better accommodate for free speech, users still do not own
their data.

Ushare is a proposition for a decentralized social net-
work [17]. This design also utilizes blockchain technology,
but in ways that differ from the approaches described above.
The most significant usage of blockchain technology here is
not the monetization of social interactions, but not unlike
our project the tracking and restriction of data sharing
throughout the network. To achieve this, they create a



token associated with each post uploaded to the network.
On every sharing operation, this token decreases, until it
reaches zero whereupon it cannot be shared further.

Ushare argues that the inherent properties of public
blockchains like anonymity, resistance to censorship and
inherent decentralization make then an excellent candidate
for hosting a social network. The paper describes a system
for distributed storage of larger files for predictable growth
of the blockchain. This load-sharing technology would
mainly be for video posts. To control the sharing process
itself, the paper describes a "turing-complete relationship
system", which is equivalent to a smart contract as de-
scribed above. Ushare introduces interesting ideas that are
applicable to our project. While storing the data outside
the ledger might be good for performance, it could also
be beneficial from a security standpoint in that it could
make it possible to store data with the user instead of in
a server that is publicly available.

IV. Proposed Solution: Just Us
Just Us will use Hyperledger Fabric to enable users

to both claim a higher level of ownership over their own
data, as well as determining the path their data travels
throughout the network. The choice fell on HLF due to
good availability of documentation, both official and third-
party, as well as HLF being a permissioned network. While
Hyperledger Sawtooth was also an option, we decided to
go with Fabric due to not needing the flexibility of having
both a permissioned and public ledger.

The project utilizes the test network provided by the
HLF developer team. The test network contains two peer
organizations and one ordering organization. It is deployed
to an isolated docker compose network and is designed to
test new applications and smart contracts.

For consistency, both the chaincode and any other
components for the backend portion of the application
should be written in Go. The application should expose an
API that a mobile application can interface with, as well
as an HLF network that communicates with the API.

The application should be able to track posts made by
the users, and manage access control to different users’
posts. How other users access a user’s post should be
recorded in the ledger as transactions, and access to data
should be managed by the user that owns the data. Users
should be able to retract another user’s permissions to view
their content, and otherwise accurately regulate access to
their data.

Instead of storing all data on the blockchain, non-
transaction data should be stored off-chain on an external
database only accessible to the backend server. This creates
more predictable growth of the size of the blockchain since
all assets persisted on the ledger are of the same size, as
well as making it easier to implement different types of
content uploads such as photos or videos to the application.

Our solution uses a REST API together with an HLF
network. The users again authenticate to the REST API
using JSON web tokens, and access to the HLF network is
done through an HLF gateway enabled peer using a single

certificate authenticating the server. A single channel holds
all users’ posts, and access to a user profile is controlled
through the API.

Assets on the ledger are profiles, each representing a
single user. A minimal profile asset includes the data fields
"username", "followers", "followed users", "pending followers"
and "posts" (a list of the posts the user has either created
or shared). The list of posts are data objects consisting of
the fields "owner", "post id" and "sharing history". Sharing
history is a list of users that have shared a post, and is
used to verify whether another user has access to read the
post.

A. Frontend Design
The requirements for the frontend were to be able to

navigate from one screen to another, to allow for easy
styling and shaping of components in the interfaceand
to make API calls to the backend server. More specific
functionality included having a home screen with posts
of followed users, being able to follow and accept follow
requests, being able to forward posts in a private chat
between users, and create posts and users. Other proposed
functionality was being able to see your own posts, track
where they ended up and control it by restricting certain
users access.

We used the React Native [18] framework because it has
a good reputation, being developed by Meta [19]. Code
written in React Native works the largely same for both
Android and iOS, making deployment to the two major
platforms a lot easier.

1) User Interface Design: Diagram 1 shows the proposed
user interface design for the mobile application.

Fig. 1. UI flow diagram



Fig. 2. The navigation bar on the bottom of the screen

B. The First Screens and Tab Navigation
The navigator is a bar on the bottom of the screen with

four different touchable icons which navigates the user to
its respective screen (Fig. 2). The stack navigator was used
on the four tab screens to further navigate to other screens,
stacking upon the original screen which gives you an arrow
in the top left corner to return to the previous screen.
The mobile application has support for instant messaging,
however it wasn’t implemented in the backend portion of
the project.

C. Nests and Stack Navigation

Fig. 3. The first screen of the application

We then made the index screen, which is shown in Fig.
3. This is the first screen the user sees when opening up
the application. Nests were used to implement this. A nest
is a navigation system within a navigation system. Most of
the four tab screens got their own nest which had a stack
navigation within the tab navigation, shown in the code
of Fig. 4.

To make the navigation from the login screen to the main
content of the application, a nest enfolding the four nests
had to be made. This became a stack navigator within a
tab navigator, within a stack navigator where you hide the
return arrow when you navigate from the login screen to
the main application. The login functionality was made by

Fig. 4. The upper image is the stack navigator for the home screen
with the post feed, and the lower code shows that stack as the first
component of the tab navigator, together making a nest.

globally storing the logged in user with AsyncStorage [20]1,
and setting it to an empty string when logged out.

The screen displaying posts from other users is called
the home screen, and can be seen in Fig. 5.

D. Connecting with the API
The frontend communicated with the backend portion

of the application through an API. For all functions within
the application, from following another user to finding a
user on the network, we created API endpoints that took
GET and POST requests respectively, depending on the
action needed.

Making it possible for a user to accept the follow request
was done by adding a button on the profile screen that
displayed the list of all users that have sent a follow request.
This list of users is obtained by fetching data from the
"’/Profile?username=’+user" endpoint that returns all data
associated with the user, including its posts, followers and
follow requests. With the help of the React hook(feature)
Effect [21], the data fetch happens as you enter the screen
and the list of pending followers is saved in a state variable.
The display of the pending followers has a pressable green
check symbol that accepts the follow request. This is done
by sending a POST-request to "...:8080/User/AcceptFollow"
together with the user and the future follower as data in
the body.

Further development included adding a button on all
posts displayed on the home screen. This was a share
button that would have the functionality to share the
post further to the followers of the user sharing the post.
In simpler terms, when a user shares a post, it posts
it to its own followers, with the original creator and
content. This is by sending the user, owner and post ID to
"...:8080/Post/Share’". This potentially exposes the post to

1AsyncStorage is now deprecated, so for future development it
would have to be replaced with a maintained solution to avoid the
application breaking upon a new update.



Fig. 5. The home screen with the post feed.

users not following the original creator, and giving them
the opportunity to share the post even further.

E. Privacy
When there is a possibility to share posts, the original

creator should know who shares the post and where it ends
up. This is where the privacy screen comes into play. This
screen also uses Flatlist [22] to display the post ID of a
post and the users that have shared the post. This was
done by first fetching all the posts of the logged in user,
and sending the list of posts into another function called
"makeShareList()". This function loops through the post
ID of every post in the list and sends a "GET"-request that
return the transaction history of the post, which includes
every user that has shared that post. This data is pushed
onto another list, as an object containing the sharers of the
post and the post ID. This list is used when rendering the

item that is displayed in the Flatlist [22] on the privacy
screen. It includes conditional rendering, rendering different
components depending on whether or not there exists any
sharers of the post. The last step is distinguishing the
sharers of the post that follow the original creator and
not. This is done by fetching the follower list of the user,
and checking if the sharer is included in the follower list.
The sharers are then conditionally rendered with different
colors. The followers of the original creator are displaying
with normal black font color, and the sharers that do not
follow the original creator will be displayed with red font
color. This is done by giving the latter’s "<Text>" tag its
own style component.

F. Backend
The chosen solution consists of three main components:

The chaincode, the chaincode tests, and the API. All
components are written in Go for consistency.

1) Chaincode: The chaincode uses the smart contract
API created by hyperledger fabric to facilitate creation of
smart contracts [23].

All chaincode functions are methods on the struct
SmartContract defined earlier in the script, as well as
taking in the transaction context. Taking in the context like
this makes the function more testable. Whenever functions
in the chaincode need to access the ledger, they use the
transaction context to pass the function getStub() which
gives access to functions that operate on the ledger as
well as the world state, in this case the function creates
a query for the complete history of the profile with the
corresponding userId. All queries are simple key-value
queries.

2) Chaincode Tests: Tests for chaincode were a necessity
for speedy development. The virtual machine used more
than 2 minutes to rebuild the network and install new
chaincode on the peers, which made it near impossible to
weed out small bugs without having the tests.

The tests use mocks generated by counterfeiter to be
able to pass a fake transaction context to the chaincode
functions. As per usual, the tests aim to test for edge cases.

3) API: The final component of the backend is the
API. The API creates the interface between the mobile
application and the fabric network. The connection is made
with a gateway enabled peer. To authenticate the API to
the network, a certificate is created from one of the pre-
made identities in the HLF test network. This identity is
stored in a wallet folder in the same folder level as the server.
The server uses the gorilla/mux [24] library to enable the
passing of parameters in the url.

When contact has been made between the gateway
enabled peer and the API, the gateway can be used to
fetch an instance of the chaincode running on the network.
from that instance, the API can call chaincode functions.

The call to the chaincode function FollowProfile is made
through the chaincode instance. parameters must be passed
as strings. The function followUser is called when the
endpoint /User/Follow is hit.



G. Running Environment
The chaincode and API development was done on a re-

mote virtual machine running linux. This was because HLF
plays nicer with linux systems than other environments. In
addition to this, using the VM provided us with a static
IP address reachable from within the UiS network, thus
we could easily host the website for the mobile application.

H. Frameworks/Tools Used
For development of chaincode and API we used the

Visual Studio Code [25] programming environment together
with its SSH extension. The API was written using the go-
rilla/mux [26] package to be able to fetch parameters from
the URL. This is mostly a feature for quick prototyping,
as passing parameters in the URL is generally considered
unsafe.

The code for the finished product can be found on github
in the repository at this link: https://github.com/UiS-
DSComputing/just-us-blc-social

V. Evaluation
Execution Time Chaincode execution in HLF is very

fast relative to public blockchains like Bitcoin, but
still proved to be sluggish in our application. The
likely cause for this is the rate at which the orderer was
configured to assemble and verify blocks. If the amount
of transactions do not reach the threshold for creating a
new block there is a timeout that initiates the creation
of a new block, resulting in slower execution.

Data Sharing Our application demonstrates the concept
of tracking data based on querying the transaction
history. To obtain the sharing path of the data object,
the application gets the history of the post in question.
Though the application does not use the complete
history in its current iteration, there is the potential
to automatically audit this history of events to see
if there is something that does not match what the
history of events should be. Using the transaction
history is more valuable than simply checking a state
variable, as a state variable does not provide a history
of all their past states and thereby if access to the
account is compromised it is more difficult to discover.
The current implementation shows the user which of
their followers who shared their post, and which users
that do not follow the user who also shared the post
further.

Query Efficiency HLF supports two different types of
state databases for storing assets (in this case the
profile objects): LevelDB and CouchDB [27]. Whereas
LevelDB is faster, couchDB supports more advanced
queries if the assets are stored in JSON format.
The application only uses key-value queries for the
application, which potentially could be improved using
more specific JSON queries. While for the current
configuration LevelDB seems to be more appropriate,
as the chaincode only addresses the ledger using key-
value queries, due to the complexity of the data

object, more complex queries could speed up certain
transactions that take a lot of time due to having to
filter out the fields of interest instead of receiving them
as raw data.

Network Design For network design the project largely
relied on the test network provided by the HLF
development team. This is not a problem for testing
of smart contracts and developing a basic proof-of-
concept. However, for experimenting with different
policies and different network configurations and
topologies, it is necessary to design a bespoke network.
In the documentation for the test network, the HLF
developers state that the test network is prone to
breakage upon changes. This is most likely due to the
accompanying script for deploying the network which
automatically sets up all facets of the network, from
creating a certificate authority, to setting up organiza-
tions, to creating channels for those organizations by
hard-coding.

Data Uploads For the moment, data uploads are limited
to text uploads. This does not need to be the case, as
the data is not stored on the blockchain, only in the
off-chain database. Therefore to enable the uploading
of photos and/or videos, only small changes in the
database as well as in the API to handle sending and
receiving videos would need to be made.

Decentralization In its current state the application does
not support decentralization. It would be possible
to deploy the social network chaincode to multiple
channels, however users in different channels are not
discoverable to eachother. This is an inherent flaw
with the design of the application.

Security The final design is not particularly secure, espe-
cially when it comes to non-repudiation. For instance,
the use of JSON web tokens (JWT) could improve
the security of requests to the network, however this
was not implemented in the final product due to basic
functionality being prioritized.

Scalability The solution approach likely does not scale
well. While improving the design of the data objects
could speed up the existing queries, in the end the
approach with multiple users sharing one channel is
not sustainable. Eventually with a larger user base, the
application would need the kind of processing power
that is available to other social media. One way to
improve the scalability of the application would be to
adapt the architecture towards a more decentralized
solution. Decentralization could result in a network
with better fault tolerance and availability, as well as
keeping performance at an acceptable level.

Encryption Data is uploaded as-is without encryption
to the database. This is not secure; if someone gains
access to the credentials for database connection, they
may compromise the privacy of the users. Enabling
the encryption of posts is decidedly an important step
for improving the security of the application. Posts
could be encrypted using the keys distributed by the
fabric CA.



VI. Discussion

At the moment, blockchain technology is still surrounded
by a lot of hype. New non-fungible token frameworks
and cryptocurrencies are being promoted by influencers
of all types on many different platforms without ever
presenting any novel ideas, while promising a huge payoff
for those brave enough to invest. Because of the popularity
of blockchain technologies like Bitcoin, the rate at which
"blockchain" is suggested as a solution when either not
applicable or when another solution may work better is
most likely too high [28]. However, in the case of this project
there is clearly potential. Many of the problems associated
with social media are related to incorrect or unlawful
treatment of personal data. With an HLF based system,
it could all but eliminate the human component in the
treatment of data, in the way that the only administrator
of the data uploaded to the network is the creator, save for
administrative rights to, e.g., remove channels and/or users
that violate the terms of service for the application, as well
as opening up for a decentralized approach where users do
not depend on a single centralized service provider. It also
opens the door for actually owning your own data, giving
you the opportunity to host your own data and thereby
have complete control over your data.

Traditional Social media earns revenue from selling
information on its users, and from letting other companies
display advertisement to a targeted audience. An appli-
cation with stricter control over personal data will not
have this income, which makes the maintaining of servers
and other expenses harder pay for. Moreover, this could
necessitate direct payment to participate in the network.
As is apparent in the amount of users of social media today,
"people in general" do not seem to care enough about their
personal data for it to be possible to implement payment
for participation.

The function that shows tracking information for a post
is very slow, as well as not persisted, so whenever you want
the sharing history for a post it has to be generated from
the transaction history. A way to mitigate this would be to
persist a graph data structure within the post object that
maintains lists of nodes and edges, and is updated upon
sharing operations. For security, this data object could be
regularly audited using the transaction history for both
the profile and the post in question. This would catch any
malicious attempts at accessing content.

To avoid selling blockchain as the be-all and end-all
when it comes to the treatment of personal data, there
are some assumptions that must be addressed and avoided.
Yes, sharing may be better controlled by the owner and
yes, malicious access may be less of a problem, but using
blockchain doesn’t automatically mean that you own your
data. Just Us does not collect and store user data for
analysis in its current iteration and neither will it if
development continues, but the other options for social
media backed by blockchain technology do not necessarily
adhere to the same principles. In practice, the usage of
blockchain should be viewed with the same scepticism

that something labeled as "water-resistant" gets versus
something labeled "water-proof"; while blockchain may
help with controlling user data, it is certainly not enough
on its own. It must be combined with other technologies
or principles so that everyone who uses the app can be
certain that the application only consumes the data that
it is intended to consume. One such design principle is
open source. In the early stages of Elon Musk’s proposed
acquisition of Twitter, Musk claims that he will open source
the algorithms used in Twitter for increased trust [29],
thereby enabling individuals that hold the applicable
competence to inspect how user data is treated by the
network. Note that Musk never mentions anything about
not collecting user data.

VII. Further Work

HLF has support for decentralization due to the Raft
protocol backing the ordering service. Different organi-
zations may have orderer nodes in the same channel,
meaning that no one organization would have to depend
on a single centralized host for transaction processing and
consensus, and would also be able to handle one of the other
organizations’ hosts crashing. However, the Raft ordering
service is not a byzantine fault tolerant system, meaning
malicious orderer nodes may affect the transaction ordering.
This could be mitigated by giving each user a single orderer
for their own channel.

The modification would center around the process for
joining the network. Whenever a new user joins the network,
they will be presented with the choice between downloading
the network application and API for usage on a personal
server (for advanced users), and a choice between service
providers who can host your API and corresponding HLF
gateway peer. The data is stored in the same location
as the rest of the components that constitute the new
user’s membership in the network, which isolates it from
unauthorized access as well as giving the user complete
control over the data. The cost of participating in the
network would therefore be the eventual hosting fee you
would have to pay to the external service provider. And this
way, the cost of participation in the network is completely
transparent in the way that you pay for the resources
needed to host the application, and not with your personal
data.

Another benefit of decentralizing the application is the
potential performance gain. Performance of the system
would depend on the popularity of any single user, and
the processing power they have delegated to processing
transactions. For the most part, this would result in stable
performance.

An important factor when creating any software product
is the value proposition: is there any money to be made
off the product? For income, the developers of the network
could offer a Software-as-a-service package where users can
pay the network for hosting the peer associated with their
account. Payment could vary depending on the resources
needed for the user that is signing up; a high profile



celebrity signing up will likely require more bandwidth
and performance than a regular citizen.

VIII. Conclusion

Personal data is valuable. It is easy to claim that not
opting out of having your private information recorded does
not affect you because you cannot feel the physical effects.
However, if data collection to this degree is allowed to run
as wild as it currently is, the large companies stand free to
use the information to further their own agenda. One needs
to look no further than the Cambridge Analytica scandal
to see the effects of this. All humans have an inherent right
to privacy, and the amount of data that is collected is
tantamount to constant surveillance. All this data in the
wrong hands can result in the loss of personal freedom.

The finished application does not fully exploit the capa-
bilities of Hyperledger Fabric. The mainstay of hyperledger
fabric is its ability to adapt to different use-cases, and
only using the test network is severely limiting, both
performance- and security-wise. However, our project shows
that it is possible to create and maintain a social network
using Fabric. Personal data is protected from users that
should not have it, and all operations on data is recorded
in the ledger, so you can audit how your data has been
used by others.

Despite us making a case for using blockchain in social
media applications, there must be room for the considera-
tion that blockchain might not be the best solution to the
problem. While knowing where posts are stored, as well
as being able to track where posts are traveling through
the network can be of interest to the owner of the posts,
the solution might be overkill for a simple social network,
and instead be more applicable in a business context. Most
people using social media aren’t too concerned with who
reads their posts, hence the massive user base of Twitter
and Facebook. In a business context, the data you share
with other members might be a lot more sensitive, and users
as well as the companies they act on behalf of may have a
stronger interest in maintaining a log of how the data shared
between companies is used. The biggest problem with social
media today is not being unable to track who shares the
posts you share publicly with friends, but rather how the
companies that provide the social network processes all the
other data that you indirectly give away through actions
such as scrolling, liking and sharing posts. This is a problem
that implementing blockchain alone does not solve. Though
some claim it could be solved with simply open-sourcing
the code base associated with the social media, simply
showing what information you are collecting is not the
same as not collecting it.

IX. Acknowledgements

Thanks to Chunming Rong and Jiahui Geng for propos-
ing the task, and for guidance and supervision during its
execution.

References
[1] A. Ringen and L. A. Jaatun, “Just Us: A Blockchain-based

Privacy-friendly Social Network,” UiS BSc Thesis, 2022.
[2] “What are smart contracts on blockchain?” [Online]. Available:

https://www.ibm.com/topics/smart-contracts
[3] “Smart contracts and chaincode,” https://hyperledger-

fabric.readthedocs.io/en/latest/smartcontract/
smartcontract.html.

[4] “Hyperledger fabric - a brief history.” [Online]. Avail-
able: https://www.linkedin.com/pulse/hyperledger-fabric-brief-
history-binh-nguyen

[5] “Endorsement policies,” https://hyperledger-
fabric.readthedocs.io/en/latest/endorsement-policies.html.

[6] “Channel configuration (configtx),” https://hyperledger-
fabric.readthedocs.io/en/latest/configtx.html.

[7] “The ordering service,” https://hyperledger-
fabric.readthedocs.io/en/release-2.2/orderer/
ordering_service.html.

[8] A. Barger, Y. Manevich, H. Meir, and Y. Tock, “A byzantine
fault-tolerant consensus library for hyperledger fabric,” in 2021
IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC), 2021, pp. 1–9.

[9] “Identity,” https://hyperledger-fabric.readthedocs.io/en/latest/
identity/identity.html.

[10] “Steem: Powering communities and opportunities.” [Online].
Available: https://steem.com/

[11] “Somee: Social media redefined for privacy, end user control
and monetization,” March 2022. [Online]. Available: https:
//somee.social/

[12] “Sapien: Social network for privacy and intependence.” [Online].
Available: https://www.sapien.network/

[13] S. Cunningham, “Somee’s last effort to take your money,” Febru-
ary 2022. [Online]. Available: https://www.publish0x.com/at-
scottcbusiness/somee-s-last-effort-to-take-your-money-xyyrlgg

[14] Sapien, “Sapien white paper,” https://coinpare.io/whitepaper/
sapien-wallet.pdf, 2020.

[15] Steem, “Steem white paper,” https://steem.com/steem-
whitepaper.pdf, 2018.

[16] J. Goodwin, “Social media shouldn’t run on personal
data,” https://blog.sapien.network/social-media-shouldnt-run-
on-personal-data-44fcd2fc29ad, 2020.

[17] A. Chakravorty and C. Rong, “Ushare: user controlled social
media based on blockchain,” in Proceedings of the 11th interna-
tional conference on ubiquitous information management and
communication, 2017, pp. 1–6.

[18] “React native · learn once, write anywhere,” January 2022.
[Online]. Available: https://reactnative.dev/

[19] “Meta,” January 2022. [Online]. Available: https://
about.facebook.com/meta//

[20] “Asyncstorage · react native,” March 2022. [Online]. Available:
https://reactnative.dev/docs/asyncstorage

[21] “Using the effect hook,” March 2022. [Online]. Available:
https://reactjs.org/docs/hooks-effect.html

[22] “Flatlist · react native,” February 2022. [Online]. Available:
https://reactnative.dev/docs/flatlist

[23] “Hyperledger fabric go contract api,” https://pkg.go.dev/
github.com/hyperledger/fabric-contract-api-go.

[24] “gorilla/mux,” https://github.com/gorilla/mux.
[25] “Code editing. redefined,” February 2022. [Online]. Available:

https://code.visualstudio.com/
[26] “Gorilla mux,” February 2022. [Online]. Available: https:

//pkg.go.dev/github.com/gorilla/mux
[27] “Hyperledger fabric: Using couchdb,” March 2022. [Online].

Available: https://hyperledger-fabric.readthedocs.io/en/release-
2.2/couchdb_tutorial.html

[28] M. G. Jaatun, P. H. Haro, and C. Frøystad, “Five things you
should not use blockchain for,” in 2020 IEEE Cloud Summit,
2020, pp. 167–169.

[29] “Elon Musk to Acquire Twitter,” https://www.prnewswire.com/
news-releases/elon-musk-to-acquire-twitter-301532245.html,
April 2022.




