
A Survey on Infrastructure-as-Code Solutions for
Cloud Development

Håkon Teppan
IDE

University of Stavanger
Stavanger, Norway

hakon.teppan@gmail.com

Lars Halvdan Flå
Software Engineering, Safety and Security

SINTEF Digital
Trondheim, Norway

ORCID: 0000-0002-3069-6788

Martin Gilje Jaatun
IDE

University of Stavanger
Stavanger, Norway

ORCID: 0000-0001-7127-6694

Abstract—Cloud software is increasingly written according
to the DevOps paradigm, where use of virtualization and
Infrastructure-as-Code is prevalent. This paper surveys the state
of the art of IaC cloud development, and proposes a combination
of Cloud-Native software to build an on-premise PaaS for a
Security Lab.

Index Terms—Cloud, IaC, DevOps

I. INTRODUCTION

Startup companies like Airbnb [1], Tesla [2], and Uber [3]
have got a lot of traction in their specific industries due to
more efficient ways to deliver their services [4]. They have
in common to use Continuous Integration and Continuous
Delivery (CI/CD) and the DevOps methodology to faster
develop new features. An important part of DevOps and CI/CD
is the concept of Infrastructure-as-Code, which enables the
automatic creation and configuration of virtual computing
resources using prepared scripts.

In a study done by Puppet in 2021 [5], it was found that
DevOps increases the number of changes to a software product
a company can do. The report grouped organizations in three
categories based on how far in the ”DevOps Evolution” they
have come. The highest tier of these groups could provide
changes in less than an hour, compared to between a week to
six months for the lowest group, and less than a week for the
mid-tier. This results in the developers having more time to
work on new features. The highly evolved organizations also
had less failure rate related to changes (less than 5 percent
compared to 15 for the others).

A. Motivation

Cloud and Enterprise on-premise Kubernetes PaaS’ could
be expensive [6]. For a small team these solutions could be
off the table. This project proposes an alternative.

This project uses Cloud-Native software from the provi-
sioning of the host server, to configuring of the Kubernetes
infrastructure, to the development of the applications. This
solution will make it easier to add new functionality to the
applications.

Research generally about GitOps and CI/CD is well doc-
umented [7] [8], but there is none found regarding a self-
contained on-premises PaaS.

B. Problem Definition

Is a self-contained on-premise container app as a service a
viable option to cloud and enterprise on-premise solutions?

C. Solution Approach

The lab solution is illustrated in Figure 1. In short, the
user (A) connects to the application through the web browser.
The application itself is hosted on the Kubernetes platform
running on the physical server. The administrator and de-
veloper push changes to either the App Source Code or the
Kubernetes Infrastructure Code (1). The commits will trigger
the CI-pipeline (2), administrated by the GitLab repository.
Afterwards, ArgoCD picks up the change, and changes the
deployment accordingly (3). The Kubernetes platform K3s
runs the environment based on the configuration given by
ArgoCD (4).

Fig. 1. Logical Overview

II. CLOUD-NATIVE COMPUTING FOUNDATION

Cloud-Native Computing Foundation (CNCF) is a Linux
open-source foundation to help develop and support container-
relevant technologies [9]. Cloud-Native is terminology for
how applications should be designed to be optimized running
on a container platform. It is a ”best practice” guidance for
container developers. Examples of Cloud Native platforms are
k3s and Kubernetes.

The CNCF has collected all the projects they support, and
sorted them by category [10]. The categories are Provsioning,
Runtime, Orchestration and Management, App Definition and

To be presented at the 13th IEEE International Conference of Cloud Computing
Technology and Science (CloudCom 2022), Bangkok, Thailand. Copyright (c) IEEE



Development, Observability and Analysis, and Platform. Each
category has further subcategories. This paper will present the
tools used in the lab for each category. The Runtime category
will not be covered, because k3s includes the Containerd
Runtime.

Furthermore, the projects get sorted in groups based on
numerous criteria defined by the CNCF to indicate how stable
they are for a production environment [9]. These groups are
Graduated, Incubating and Sandbox. Graduated and Incubat-
ing projects are qualified to use in a production environment.
CNCF distinguishes qualified projects in these two groups, to
indicate which projects have newly been accepted, and those
that have had this quality for a considerable time. A fourth
option is for a project to be a member.

Technologies discussed in this paper, their maturity, and
category in CNCF are summarized in Table I.

TABLE I
PROJECT MATURITY AND CATEGORY IN CNCF

Project Relation Category
Prometheus Graduated Observability and Analysis
Kubernetes Graduated Orchestration and Management

Helm Graduated App Definition and Development
ArgoCD Incubating App Definition and Development
Podman Member App Definition and Development
Traefik Member Orchestration and Management

MetalLb Member Orchestration and Management
K3s Member Platform

FCOS - Provisioning

III. SOFTWARE DELIVERY METHODOLOGIES

Software Delivery explains the lifetime of a software, from
the inital request from the user to the delivery of the finished
software [11]. In the subsequent sections, the methodologies
important for this thesis will be introduced.

A. DevOps

DevOps is a collective term for cultural and technical
principals that enables organizations and teams to deliver
services faster and agile [12]. It states how practices, people,
and culture should be applied for delivering IT.

B. Continuous Integration and Continuous Deployment

Continuous Integration and Continuous Deployment
(CI/CD) is a method in Information Technology (IT) for
delivering a service through an agile workflow [13]. An
increasingly popular implementation of CI/CD is GitOps [7].

1) GitOps: GitOps is a method to deliver operations to a
DevOps workflow [7]. It was first described in 2018, and is
increasingly popular by developers and operators, because of
the agile way of creating and realising changes to a production
network. In GitOps, the source code of the given project
is described in a git repository. This means that there is a
centralized source for developing and storing the current state
of the production network. In Figure 2, the git repository
is in the center. The left-most circle illustrates Continuous
Integration (CI), where developers test, deploy and build a

Fig. 2. GitOps Workflow

new version of the source code. The right-most circle shows
the Continuous Deployment (CD), which is making sure the
state specified in the source code reflects the state of the
Kubernetes deployment. CD is also responsible for monitoring
and operating the deployment. The CD part of GitOps is often
managed by a tool, automatically, e.g. ArgoCD [14]. The CI
part is a combination of developers and automated tools.

It also described how this source code can first be pushed to
test nodes for testing. If the test succeeds, it can automatically
be pushed to the production network. If it fails, the version
will be rolled back to the last known working state. This way
of working eliminates a lot of repeating tasks and enables the
DevOps member to work more efficiently.

IV. PROVISIONING

A. Provisioning Configuration Files

Several Linux OS’ have their own configuraiton file for
provisioning their machines, e.g. Kickstart for Fedora [15],
and Ignition for FCOS [16].

Both are plain-text files containing a set of instructions on
how to provision a server. They are both run only once at the
server’s first boot.

They do however differ on how they do upgrades. Both
support automatic updates, FCOS by configuring the Zincati
service, and Fedora Server by using dnf-automatic. Fe-
dora Server will be updated by updating packages individually.
Similarly to git, Zincati prepares a new commit of the OS
containing the updates. The server gets updated by rebooting
with the latest commit.

Ignition files have functionality to create systemd ser-
vices. This is also possible with Kickstart, but will require
to create it in the post section [17] with more additional
commands to do the same as Ignition. The Ignition file
is in JSON format, which is quick for a computer to read. It is,
however, not so human-readable. The solution is therefore to
create the configuration as a YAML-formatted file. The Fedora
community has made a tool called Butane [18] for converting
the YAML file to the correct JSON format.

The Ignition file used downloaded and installed the binaries
required to run the platform, that is argo-cd, sealed secrets,
and k3s. The provisioning of the physical box required some
manual steps, which was documented as a procedure.



Figure 3 shows the steps to provision the physical server.
The steps will be explained in this section. Before executing
the steps, the following prerequisites have to be in place
first. The project’s git reposiotry [19] needs to be accessible
locally, which means cloning the coreos directory from the
git repository to the administrator’s computer. The software
podman or Docker need to be installed. For writing to
the USB-stick in step 2, the Rufus software needs to be
installed [20] (or equivalent solutions). The web server hosting
the Ignition file used to provision the server needs to be
configured. The web server will run at the administrator’s
computer. This procedure uses the Python module called
http.server [21]. This module uses by default the current
directory of where the Python program is running and the
network port 8000.

Fig. 3. Provisioning Procedure

The numbers in the list below correlate with the steps in
Figure 3. Both uses the FCOS and Ignition as the example.
The two first steps is done on the Administrator’s computer,
where the following steps is located on the physical server.

1) Modify the two configuration files - the live-media and
the provisioning version

2) Embed the live-media configuration file to the USB-stick
3) Run the OS from memory by using the live-media

mounted with an USB-stick
4) Install the OS by running the coreos-installer,

and specify the URL to the ignition file as an argument
5) The server is ready to host a Kubernetes cluster

V. ORCHESTRATION

A. Traefik

Traefik is an Ingress Controller [22] that is part of the
CNCF landscape [10]. Traefik administrates traffic by reading
specific rules. These rules come in the form of a CRD, called
IngressRoute [23]. The destination Service is required.
There are multiple options to adjust the traffic, for instance
redirecting to different Service’s based on the URL, or
sending authentication requests to another Traefik specific
resource, called Middleware.

The OSS version of Traefik has a limited number of au-
thentication alternatives [23]. The enterprise version supports
OAuth 2.0 authentication, but the pricing and the rest of
the features are intended for large corporations. A better
alternative is to use the ForwardAuth component in Traefik
to redirect authentication requests to a third-party service. This
service is Keycloak, and will be covered in detail in Section
V-B.

It can also manage the authentication process to the applica-
tions located in the cluster. Not all authentication mechanisms
are supported in the OSS version of Traefik Ingress Controller.
It supports for instance Basic Authentication (BasicAuth),
Digestive Authentication (DigestAuth), and Forwarded
Authentication (ForwardAuth). Both BasicAuth and
DigestAuth sends the credentials with vulnerable format.
ForwardAuth redirects the authentication process to a sep-
arate service (Identity Provider). The Identity Provider can
either be self-hosted or public. Example of a self-hosted
Identity Providers is Keycloak [24]. Keycloak supports several
popular standards, e.g. OAuth 2.0, OpenID Connect, and
SAML 2.0, and its project is supported by Red Hat.

Examples of public Identity Providers are Google [25]
and GitLab [26]. Google requires a Google Workspace sub-
scription to be able to only accept members from a specific
organization. The free version only supports given anyone
with a Google account access. This defeats the purpose of
using an Identity Provider. GitLab’s solution requires no extra
subscription, and supports given access to member of a given
GitLab project.

B. Authentication with Keycloak

Keycloak is an OSS for managing identity and access to
several supported applications and services, e.g. Kubernetes
[24]. It has functionality to support modern identity and access
protocols, e.g. OpenID Connect, SAML 2.0, OAuth 2.0. It
is part of the CNCF Landscape [10], but not part of the
Graduated and Incubating groups. The project is however
sponsored by Red Hat [24].

As mentioned in Section V-A, Keycloak can be used in
combination with Traefik Ingress Controller, by holding the
role as the ForwardAuth in the Middleware resource.
Traefik can then use Keycloak to outsource the authentication
process.

C. Sealed Secrets

As pointed out by a CNCF blog post [27], secret manage-
ment in an Infrastructure Code Repository is very important.
Secrets are not stored encrypted by default, as described in
this Section. This means that confidential information is stored
in plain text when using the repository as a single source of
truth. There are several OSS’ for storing secrets securely, as
mentioned in the CNCF blog post. The one that will be in
focus in this project, is developed by Bitnami, called Sealed
Secrets [28]. It is supported by ArgoCD [29], but it is not part
of the CNCF Landscape [10]. As mentioned above, CNCF has
recommended it in the blog post.

The kubeseal binary [28] was required to be installed
on the physical server. This was done through the Ignition
file explained in section IV-A (see Teppan [30] for the full
provisioning script). Creating the sealed secrets required the
administrator to be connected to the physical server [28].
The secret manifests were created as normal, before sending
the file to the kubeseal command. The resulting file (the



SealedSecret) was committed to the Infrastructure Code
repository.

D. MetalLB

For the workloads to be configured with a valid IP address
so that external nodes can reach them, a network load-balancer
is needed. For on-premise Kubernetes solution that support
L2 load balancing, it was found only one OSS alternative
that was part of the CNCF Landscape [10], called MetalLB
[31]. It is still in alpha release. In the absence of better
alternatives, MetalLB was chosen. It is important to be aware
of the potential risk of running alpha releases in a production
environment.

Due to the small amount of workloads needed in this
project, only a few local IP addresses were reserved from
the local subnet to be used by MetalLB. This is done by
configuring the network router to reserve the IP addresses. In
Listing 1, MetalLB is instructed to use the 10.0.100.0/27
IP range for allocating addresses to the services running on
the cluster.

Listing 1. MetalLB Configuration
c o n f i g I n l i n e :

a d d r e s s − p o o l s :
− name : d e f a u l t

p r o t o c o l : l a y e r 2
a d d r e s s e s :
− 1 0 . 0 . 1 0 0 . 0 / 2 7

VI. APPLICATION DEVELOPMENT

A. CD with ArgoCD

ArgoCD is an OSS that enables GitOps to Kubernetes [14].
It checks with the configured git repository for changes. If
a change is found, ArgoCD will push this change to the
configured Kubernetes cluster. It sorts out everything from
storing secrets, such as container image registry username
and password, updating container images after an update, and
monitoring the namespace.

ArgoCD combined with the GitLab’s CI/CD pipeline can
deliver CI/CD for a Kubernetes deployment [32]. An alter-
native is to use Tekton [33] together with ArgoCD, which is
what Red Hat’s OpenShift utilizes [8].

1) Configuring Access to Repository for ArgoCD: To be
able to automatically deploy the latest changes in the GitLab
repository to the Kubernetes cluster, ArgoCD needs to be
configured with a WebHook [34]. API-token was used for
ArgoCD to authenticate to the GitLab repository. Furthermore,
a specific namespace for this integration was made, called
argocd. This namespace contains the API-token as a Kuber-
netes secret and a pod that runs the service for communicating
with the remote repository.

2) The ArgoCD Application and Infrastructure Code Repos-
itory: Both the Kubernetes Infrastructure and ArgoCD Ap-
plication Code is found in the same git repository. This
implementation uses the Apps of Apps installation pattern,
recommended by ArgoCD [35]. These files manifest how

the Kubernetes installation should look like. There is also
another git repository, that is separated from this, and that
is the Application Source Code. They are split, since ArgoCD
recommends separating the Infrastructure Code and the Appli-
cation Source Code [36]. The following sections will explain
in detail the ArgoCD Application Code and the Infrastructure
Code.

B. Managing Kubernetes Infrastructure Code

By Kubernetes Infrastructure Code it is referred to the
collection of code that is needed to run the Kubernetes PaaS.
It is written declaratively, to support the GitOps methodology
described in Section III-B1. In the following sections, the
popular tools for managing this type of code repository will
be introduced, that is Helm and Kustomize. ArgoCD also falls
in this category, but has its own section VI-A dedicated to it.

1) Helm Charts: Creating Kubernetes manifests for every
application would require a lot of work to create and maintain.
That is where Helm charts come into picture. An Helm Chart
is a collection of manifests for a given workload [37]. It is in
many ways similar to a package manager. A package manager
keeps track of the version history of all its packages and is a
centralized hub for end-users to get packages. Helm serves a
similar purpose, only with manifests, or Helm charts. Helm is
a good alternative when using well-known applications, e.g.
monitoring with Prometheus [38] and Grafana [39]. Using
Helm charts means less administration for local administrators.
Helm charts are maintained by a community of developers,
and therefore the quality and update frequency of each chart
is varying.

2) Kustomize: Kustomize is a service for configuring Ku-
bernetes manifests [40]. It can therefore also customize and
manage Helm charts [41]. This is useful when specializing
the chart to fit the local environment. Examples of Kustomize
configuration are a database password and a custom URL to
a website.

C. GitLab CI

To build the container, a container tool is needed. GitLab
has Runners, that can execute a CI pipeline [42]. In a con-
tainer application development repository, this pipeline should
build, test and push the container image. An executor is the
environment that processes the stages [43]. The GitLab Runner
supports several type of executors. For this usecase, the Docker
executor will be used.

VII. OBSERVABILITY AND ANALYSIS

This section will describe observability related to servers,
kubernetes infrastructure, and containerized applications.

In the observability category of CNCF Landscape [10],
there are four projects that falls in the Graduated and Incu-
bating groups, where Prometheus is the only Graduated. The
Grafana project is not part of the qualified projects, but are
however supported by the CNCF.

The log shipping had to be configured for the work-
loads to ship metrics to Prometheus. This was done in



the kustomization.yaml for each workload, under the
commonAnnotations key. The configuration is illustrated
in Listing 2.

Listing 2. Prometheus Log Shipping
commonAnnotat ions : :

p rome theus . i o / s c r a p e : ” t r u e ”
p rometheus . i o / p a t h : / m e t r i c s
p rome theus . i o / p o r t : ”8080”

VIII. PLATFORM

K3s is an open-source Kubernetes distribution created by
Rancher [44]. Its main selling point is the lightweight binary,
meaning it can be installed on almost any computer. It is built
for running from a low resource computer to a multi-cluster
production environment. The binary file for it is only 40 MB,
and a node running it only requires 512 MB of RAM. This
means that the master node can host pods. This is something
that the other alternatives can not.

IX. DISCUSSION

We note that 4 of the projects discussed in the paper
are considered to be suitable for production, each belonging
to their own category. Among the solutions considered in
this paper the Provisioning category does not have a project
sufficiently mature for production. FCOS with Ignition were
selected as the provisioning tool due to the minimal setup on
the physical server. For a larger environment, this solution is
not recommended. This can be reflected in CNCF’s supported
provisioning tools which is aimed for a larger environment.

Runtime is not mentioned, since k3s provides a container
runtime out of the box (containerd).

Among the projects discussed in this paper, considerable
attention has been given to Kubernetes. While there are
several graduated projects in the Orchestration & Management
category, Kubernetes is the only one in the subcategory of
Scheduling & Orchestration. Furthermore, it appears to be by
far the most popular, with more than double the number of
stars and eight times the number of commits compared to any
of the other projects in this category.

The CNCF maturity of the different tools has been a factor
in the selection process. In the selection of the provisioning
tool, a non Cloud-Native tool were selected. Some recom-
mended tools were considered, but it was argued that they
would complicate such a small environment. Combining FCOS
and k3s was successful without further complicating the setup.
However, for further works to improve this setup, one or
several of the recommended tools should be considered to
replace FCOS. For instance, a solution could be to manage
the physical server with Chef or Ansible.

X. CONCLUSION

We have presented a survey on Infrastructure-as-Code so-
lutions for producing secure cloud software, which serves as
a foundation for creating an IaC-based ”lab-in-a-box” [30].
For our purposes, we conclude that GitLab and Kubernetes
containers are most suitable.

ACKNOWLEDGMENTS

This paper is based on the first author’s MSc work [30]
at the University of Stavanger, with support from the Nor-
wegian Research Council through FME Cineldi, project no.
257626/E20.

REFERENCES

[1] M. Ashley and B. Wolfe, “Scaling a migration to continuous
delivery (airbnb),” 2019, spinnaker Summit 2019. [Online]. Available:
https://devops.com/devops-chat-continuous-delivery-at-airbnb/

[2] S. Vöst and S. Wagner, “Towards continuous integration and continuous
delivery in the automotive industry,” ArXiv, vol. abs/1612.04139, 2016.

[3] J. Wang, J. Li, Y. Zhang, and Y. Bai, “Continuous integration and deploy-
ment for machine learning online serving models,” Uber Engineering,
2021.

[4] Dawson, Brian, “Digital Disruptors, How AirBnB, Tesla,
and Uber Used Software to Transform Entire Industries,”
https://www.cloudbees.com/blog/digital-disruptors-how-airbnb-tesla-
and-uber-used-software-innovation-transform, accessed: 2022-05-11.

[5] Puppet, “State of DevOps Report 2021,” https://puppet.com/resources/
report/2021-state-of-devops-report, Puppet Labs, Tech. Rep., 2021, ac-
cessed: 2022-05-11.

[6] Amazon, “AWS Pricing Calculator,” https://calculator.aws/#/
createCalculator/EKS, accessed: 2022-05-21.

[7] F. Beetz, A. Kammer, and S. Harrer, GitOps, Cloud-native Continuous
Deployment, 1st ed. Berlin, Germany: InnoQ Deutschland GmbH, 2021.

[8] W. Pernath, Getting GitOps, A practical platform with OpenShift, Argo
CD, and Tekton. Raleigh, United States of America: Red Hat Developer,
2022.

[9] The Cloud Native Computing Foundation, “Graduated and Incubating
Projects,” https://www.cncf.io/projects/, accessed: 2022-06-05.

[10] ——, “Cloud Native Landscape,” https://landscape.cncf.io/, accessed:
2022-06-05.

[11] J. Humble and D. G. Farley, Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Automation.
Upper Saddle River, NJ: Addison-Wesley, 2010. [Online]. Available:
http://my.safaribooksonline.com/9780321601919

[12] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean
Software and DevOps Building and Scaling High Performing Technology
Organizations, 1st ed. IT Revolution Press, 2018.

[13] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous integration, delivery
and deployment: A systematic review on approaches, tools, challenges
and practices,” IEEE access, vol. 5, pp. 3909–3943, 2017.

[14] The ArgoCD Authors, “What is Argo CD?” https://argo-
cd.readthedocs.io/en/stable/, accessed: 2022-06-14.

[15] The Fedora Project, Automating the Installation with Kickstart, Fe-
dora Community, 2021, https://docs.fedoraproject.org/en-US/fedora/
latest/install-guide/advanced/Kickstart Installations/.

[16] ——, Ignition, Red Hat Inc, 2021, https://coreos.github.io/ignition/.
[17] Red Hat, “A.3 Scripts in Kickstart File,” https://access.redhat.com/

documentation/en-us/red hat enterprise linux/8/html/performing
an advanced rhel installation/kickstart-script-file-format-reference
installing-rhel-as-an-experienced-user, accessed: 2022-06-14.

[18] The Fedora Project, “Getting Started,” https://coreos.github.io/butane/
getting-started/, accessed: 2022-06-14.

[19] H. Teppan, “Infrastructure as code for smart grid security lab,” https:
//gitlab.com/iac-thesis-uis/sintef-lab, 2022.

[20] Pete Batard, “Rufus,” https://rufus.ie/en/, accessed: 2022-06-12.
[21] The Python Authors, “HTTP Servers,” https://docs.python.org/3/library/

http.server.html, accessed: 2022-06-12.
[22] The Traefik Authors, “Welcome,” https://doc.traefik.io/traefik/, accessed:

2022-06-05.
[23] ——, “Traefik & Kubernetes,” https://doc.traefik.io/traefik/routing/

providers/kubernetes-crd/, accessed: 2022-06-05.
[24] The Keycloak Authors, “Open Source Identity and Access Manage-

ment,” https://www.keycloak.org/, accessed: 2022-06-05.
[25] The Google Authors, “Setting up your OAuth consent screen,” https:

//support.google.com/cloud/answer/10311615, accessed: 2022-06-14.
[26] The GitLab Authors, “Configure GitLab as an OAuth 2.0 authenti-

cation identity provider,” https://docs.gitlab.com/ee/integration/oauth
provider.html, accessed: 2022-06-14.



[27] S. Kok, “Secrets management: essential when using Kubernetes,”
https://www.cncf.io/blog/2022/01/25/secrets-management-essential-
when-using-kubernetes/, accessed: 2022-06-14.

[28] Bitnami, “”Sealed Secrets” for Kubernetes,” https://github.com/bitnami-
labs/sealed-secrets, accessed: 2022-06-14.

[29] The ArgoCD Authors, “Secret Management,” https://argo-
cd.readthedocs.io/en/stable/operator-manual/secret-management/,
accessed: 2022-06-14.

[30] H. Teppan, “Utilize GitOps for Smart Grid Security Lab,” Master’s
thesis, University of Stavanger, 2022, accepted: 2022-07-20T15:51:30Z
Publisher: UiS. [Online]. Available: https://uis.brage.unit.no/uis-xmlui/
handle/11250/3007299

[31] The MetalLB Contributors, “MetalLB,” https://metallb.universe.tf/, ac-
cessed: 2022-06-14.

[32] The CNCF, “CICD Pipelines using Gitlab CI & Argo CD with An-
thos Config Management,” https://www.cncf.io/blog/2021/01/27/cicd-
pipelines-using-gitlab-ci-argo-cd-with-anthos-config-management/, ac-
cessed: 2022-06-14.

[33] The Tekton Authors, “Cloud Native CI/CD,” https://tekton.dev/, ac-
cessed: 2022-06-14.

[34] The ArgoCD Authors, “Git Webhook Configuration,” https://argo-
cd.readthedocs.io/en/stable/operator-manual/webhook/, accessed: 2022-
06-14.

[35] The ArgoCD Developers, “Cluster bootstrapping,” https:
//github.com/argoproj/argo-cd/blob/master/docs/operator-manual/
cluster-bootstrapping.md, 2022.

[36] ArgoCD, Best Practices, ArgoCD, https://argo-cd.readthedocs.io/en/
stable/user-guide/best practices/.

[37] The Helm Authors, “The Package Manager for Kubernetes,” https://
helm.sh/, accessed: 2022-06-14.

[38] The Prometheus Authors, “What is Prometheus?” https://prometheus.io/
docs/introduction/overview/, accessed: 2022-06-05.

[39] The Cloud Native Computing Foundation, “Graduated and Incubating
Projects,” https://www.cncf.io/projects/, accessed: 2022-06-05.

[40] The Kustomize Authors, “Kubernetes Native Configuration Manage-
ment,” https://kustomize.io/, accessed: 2022-06-14.

[41] The Kubernetes Authors, “Kustomization of a Helm Chart,” https://
github.com/kubernetes-sigs/kustomize/blob/master/examples/chart.md,
accessed: 2022-06-14.

[42] GitLab, GitLab Runner, The GitLab Developers, https://docs.gitlab.com/
runner/.

[43] ——, Executors, The GitLab Developers, https://docs.gitlab.com/runner/
executors/.

[44] The Rancher Community, K3s - Lightweight Kubernetes, Rancher, https:
//rancher.com/docs/k3s/latest/en/.


