
Automating Security in a Continuous Integration Pipeline

Sohrab Chalishhafshejani1, Bao Khanh Pham1and Martin Gilje Jaatun12 a

1IDE, UiS, Stavanger, Norway
2SINTEF Digital, Trondheim, Norway

{s.chalishhafshejani, bk.pham, martin.g.jaatun}@[stud.]uis.no

Keywords: DevSecOps, DevOps, Software Security, Cyber Security, Continuous Integration

Abstract: Traditional approaches to software security are based on manual methods, which tend to stall development,
leading to inefficiency. To speed up a software development lifecycle, security needs to be integrated and
automated into the development process. This paper will identify solutions for automating the security phase
into a continuous software delivery process, integrating security tools into a Github repository by using Github
Actions to create automated vulnerability scanning workflows for a software project.

1 INTRODUCTION

Aggressive competition in software companies has
led to shortening applications’ time-to-market inter-
vals in order to receive feedback and evaluate the mar-
ket faster before further development. As a result, ag-
ile software development has been introduced to bring
the development team closer to business teams. This
model tries to add new features on each iteration of
the software lifecycle and build up features optimized
based on end-user needs (Kumar and Goyal, 2020).

In recent years, software development has been
shifting from delivering software as a product to a
Software-as-a-Service principle. Hence, the software
has been shifted from on-premises servers to cloud
solutions. This enables providers to deploy new soft-
ware features in short intervals without being con-
cerned about backward compatibility issues (Myr-
bakken and Colomo-Palacios, 2017).

Traditionally, the development team was respon-
sible for creating logic and core features of the pro-
gram, and the operation teams handled deploying the
app on the server/cloud. The two parties were nor-
mally only connected via ticketing systems, and prob-
lems along the way required sending and receiving
several tickets between the development and opera-
tions team. The solution was to merge Development
and Operations into the DevOps paradigm, where op-
erations traditionally handled by the operations team
such as building and testing are automated, result-
ing in shorter time to deploy changes, achieving con-

a https://orcid.org/0000-0001-7127-6694

tinuous development and delivery. Companies like
Google and Microsoft first stepped into the game and
introduced pre-made DevOps utilities and software
(Leite et al., 2019).

In contrast, there are several trade-offs to this ap-
proach of software delivery. DevOps engineers try to
push code batches in short intervals and it will force
security teams to review the newly generated code
faster. Traditionally (Howard and Lipner, 2006) all
security analysis procedures like vulnerability scan-
ning and code review were done manually by the se-
curity team (Kumar and Goyal, 2020), resulting in ei-
ther delayed releases or insufficient security if mis-
configurations, hardcoded passwords, or other dan-
gerous concerns slip through the controls.

There is a need for faster security checks and au-
tomated testing systems which can reduce the amount
of manual work needed to be performed by security
teams. Therefore, the DevSecOps concept was born
to effectively combine DevOps and Security; integrat-
ing an automated continuous security model with a
regular Continuous Integration and Continuous Deliv-
ery (CI/CD) pipeline through vulnerability scanning
tools. These tools are added to the many phases of
the software continuous delivery pipeline.

In this paper, we are going to look for possi-
ble ways to automate software security checks in
the DevSecOps procedure by building up a work-
flow from security tools. This workflow has been
tested with three open-source projects and one real-
life project from the development organization that
serves as our case study (referred to in the following
by its pseudonym “ACME”). This will help compa-

Author version. Presented at the 7th International Conference on Internet of
Things, Big Data and Security - IoTBDS, 2022. Final version available at
https://www.scitepress.org/Link.aspx?doi=10.5220/0011083500003194

nies to scale up security in the whole DevOps process
with a one-time effort by changing the pipeline and
integrating security into it.

2 Motivation

Despite the successes of the Microsoft Security De-
velopment Lifecycle (Howard and Lipner, 2006) and
the focus that has been afforded software security in
the last decade and a half (McGraw, 2006; Williams
et al., 2018), the average developer still does not pos-
sess the requisite skills for developing secure soft-
ware (Oyetoyan et al., 2017). Traditionally, the need
for strong software security measures has not been
high enough on management’s radar to convince them
to invest more in it. Manual security procedures are
prone to human error, and are also slowing the whole
speed-to-market requirements of modern application
development environments.

2.1 Problem Definition

The real question that arises here is what do we have
to automate? There are several phases in software
development that each can be a target by malicious
actors. It is recommended that organizations look
back at their whole infrastructure and try to under-
stand where they can apply security measures in their
DevOps environment. In addition, the infrastructure
of applications is now more volatile since it is shifted
more to Cloud Native apps and infrastructure as a ser-
vice (IaaS) platform. These security measures must
contain ways to ensure security. Containerized envi-
ronments and microservice development also create
new concerns which must be considered.

2.2 Use Cases/Examples

Despite some attention from the industry in recent
years, the amount of academic research on De-
vSecOps is still meager (Jaatun et al., 2017; Ra-
japakse et al., 2021). However, there are quite a
few practitioners who have researched, experimented,
and published their gray literature reports (white pa-
pers, blogs, articles, etc.) (Myrbakken and Colomo-
Palacios, 2017; Mao et al., 2020). Besides, there
is a growing choice of tools for companies to build
their own pipelines. All major service providers strive
to build and deliver the best platforms and frame-
works for their customers, and security companies
try to create tools that can be integrated with those
platforms. Major platforms include Github Actions,
Amazon Web Services, Microsoft Azure, and Gitlab.

Also, some companies choose to combine different
tools and platforms or develop tools for internal use.

2.3 Challenges

Although promising to bring practical results, the ap-
plication of automated security testing in the CI/CD
pipeline in practice also faces certain difficulties. Be-
low are the difficulties in applying DevSecOps men-
tioned by Myrbakken and Colomo-Palacios (Myr-
bakken and Colomo-Palacios, 2017).

• The new DevSecOps process must match the De-
vOps process; automated security checks have to
be integrated into the existing CI/CD pipeline and
have to be truly efficient at its speed.

• Volatility implies changes to:
– Techniques – Security engineers must under-

stand the DevOps process and developers must
learn basic security skills and standards.

– Process speed – Security scanning tools are
time-consuming for each new build.

– Culture – There will be a change in the culture
of working at the company as security teams
and product development teams combine. In
addition, the understanding of security must
also be disseminated to all other departments
to get a truly secure process.

– Standards – New security standards will be ap-
plied and updated continuously.

• Choosing the right tool for each platform is also
a job that requires attention. Good tools are not
necessarily suitable for the platform used by the
company if they are not effectively integrated. Be-
sides, not all tools are available to be integrated.
Some tools have to be created or redeveloped from
existing open-source code.

3 DEVELOPMENT LIFECYCLE

Software development lifecycle (SDLC) is the pro-
cess of a software project being developed and op-
erated. It usually involves major stages such as plan-
ning, implementation, testing, operation, and mainte-
nance. Some of the oldest and most popular SDLC
models include the waterfall model or the V-Model
(Balaji and Murugaiyan, 2012). However, along with
the development of technology, those old models
were outdated and no longer suited to the needs of the
software development industry. At that time, Agile
was introduced as the preeminent software develop-
ment model, and later, other models were gradually
developed by researchers and engineers.

3.1 Agile Software Development

The Agile development story started when a group
of software consultants signed the Manifesto for Ag-
ile Software Development in 2001 (Rehkopf, 2001).
Traditional methods of software development like the
waterfall method did not take into account the un-
predictability aspect of the development environment
(Rao et al., 2011), focusing on sequential work it-
erations and preparing requirements for each part of
the design before moving to the next part. Testing
teams were only involved in the final phase of de-
velopment and problems were hidden until the test-
ing phase. This method was not flexible to market
and business. Any changes had to be completely re-
searched and put in the next release of development
(Balaji and Murugaiyan, 2012). On the other hand,
the Agile method was introduced and it has been the
leader for many years. Agile puts user feedback in
front and welcomes changes from the market or users
at any time during the development procedure.

Agile meant that software development cycles
were reduced and finished products could be shipped
faster. This is beneficial to companies, since prod-
ucts are exposed to users faster and feedback could
be gathered to polish the current development process
based on user needs. Recent years have seen the intro-
duction of agile variants such as Kanban (Huang and
Kusiak, 1996) and Scrum1. Kanban focuses more on
maximizing efficiency and reducing work currently
in progress by each team based on their capabilities.
The Scrum method tries to create short development
runs called Sprints to create software and evaluate it
at each iteration (Rehkopf, 2020). These methods are
the foundation of software delivery lifecycles and will
play a big role in software development companies.

3.2 DevOps Methodology

The first Agile real-world implementations (Rehkopf,
2001) were mainly concerned about how it is possible
to improve the overall development experience. How-
ever, developers were only focusing on code delivery
at the time. The path for the codebase to reach clients
was taken care of by the operation team. These two
teams were incomplete with different pathways of de-
livery ideology. Development teams were based on
swift actions and changes while the operations team
only focused on stability and predictability of soft-
ware changes. DevOps is a unique software delivery
methodology that focuses on principles and practices
to bridge the gap between development and opera-
tion teams, with continuous feedback and response

1https://www.scrum.org/resources/what-is-scrum

pipelines which will also result in reduced software
development cycle time (Jabbari et al., 2016).

The main difference between Agile and DevOps
is that DevOps heavily focuses on collaboration be-
tween Development and Operations teams. In addi-
tion, it has been creating standards for pipelines and
automated delivery methods which helps developers
to publish their code into production with less has-
sle. This will lift the workforce from operation teams
and make them available to monitor the product and
work closely with the development team to fix prob-
lems along the way in production (Leite et al., 2019).
Automation is one of the key roles in DevOps prac-
tices and should be applied whenever and wherever
possible. There are several areas in which DevOps
have been constantly focusing on improvement which
are mentioned below.

3.3 DevOps Focus Areas

In the previous section, we have identified DevOps
principles like increased deployment frequencies and
reduced time to market. Achieving these goals re-
quires fundamental changes in several areas in the
software development environment.

3.3.1 Team Collaboration

In a software project, the collaboration between teams
is a key to keep products stable since changes are
implemented fast and on the go. Reducing delays
and communication gaps is important, and can only
be applied by new tools and cultural change in the
whole software company. Collaboration software en-
ables development and operation teams to go beyond
emails, physical meetings, and regular talks and bring
on a new level of connectivity (Hegde and Singh,
2020). Tools like Slack, Jira, Trello, and Codesourcer
are examples of collaboration technologies that are
widely used in industry to connect teams that are
sometimes even geographically far away from each
other. However, they should be accompanied by a
reform in the mindset of teams to include coopera-
tion and teamwork culture in the employees. Regu-
lar feeds from different phases of application devel-
opment like unit testing and code analysis enable all
parties to detect and solve issues faster.

3.3.2 Automation Wherever Possible

In practice, phases of an SDLC are often continu-
ous. The lifecycle is repeated over and over again,
and steps like planning, developing, building, testing,
or deploying the software are continuous cycles (Vir-
mani, 2015). When applying DevOps to those stages,

one of the most important things we need to pay at-
tention to is optimizing the performance of the work.
To do that, the automation of repetitive steps without
the intervention of engineers is essential. Processes
like building, testing, and deploying often repeat in
large numbers, even with very small changes to the
code. To handle these phases manually, the develop-
ers and operators will take a lot of time to complete.
Therefore, DevOps encourages automation wherever
possible. Automation saves more time during repet-
itive tasks, such as building and testing newly added
code or modified old code (Ebert et al., 2016). By
using automation, engineers can have more time for
other stages that cannot be automated, such as plan-
ning, coding, or debugging.

3.3.3 Monitoring

Since automation is a critical DevOps goal, monitor-
ing is indispensable for automation to follow its exact
trajectory. Monitoring the system to make sure the
system, pipeline, and tools are working as they should
be. Once a problem occurs at any stage, it’s easier and
more efficient to resolve it with a carefully monitored
system (Schlossnagle, 2018). In fact, software logs
are often cumbersome and confusing, which makes
it difficult for engineers to analyze and process them.
However, quite a few engineers today still use purely
manual debugging tools, which results in a signifi-
cant reduction in productivity. With automated assis-
tive tools, monitoring and measurement can be better
accomplished (Ebert et al., 2016). System monitor-
ing and automation are interrelated, where monitoring
makes automation more accurate, while automation
makes monitoring faster.

3.4 CI/CD Pipeline

The CI/CD pipeline, which has the basic components
Continuous integration (CI) and Continuous Deliv-
ery (CD), is basically an Agile-based pipeline for
SDLC optimization. The CI/CD pipeline is intri-
cately constructed to ensure phases of software de-
velopment can be continuous. In recent times, the
CI/CD pipeline has gradually become an important
component in software development, making SDLC
more flexible, more efficient, and faster. Finally, with
the rise of cloud solutions and big cloud providers
releasing command-line tools for deploying applica-
tions, continuous deployment has been added to the
SDLC as a final step on the pipeline. Here we focus
on each of these phases in detail.

3.4.1 Continuous Integration

CI is the process that allows software developers to
integrate new code into the original repository as well
as share them throughout the workflow. Along with
that, CI automation also allows detecting any error
at an early stage to commit the problem to be solved
immediately when it occurs (Virmani, 2015). When
the new code is merged with the existing repository, a
new version will be activated. After the build is com-
pleted, test runs are automatically performed against
the build to ensure nothing goes wrong. The integra-
tion is continuous (making it to be the ”C” in CI).
The build automatically verifies the code every time
the developer pushes their changes to the repository.
Therefore, development teams may determine prob-
lems early and have time to come up with solutions.

3.4.2 Continuous Delivery

Inspired by distributors and deliveries, CD is a soft-
ware engineering approach based on software produc-
tion in short cycles, which makes it easy for publish-
ers to test, build, and deploy regularly. At the same
time, it also reduces costs and risks when changes oc-
cur. CD is considered as an extension of the CI, and
is the regular code upgrade to ensure the quality as-
surance (QA) (Chen, 2015). The CD phase occurs
at the end of the CI cycle and is responsible for the
automatic distribution of the integrated code from the
development stage to the production stage (Virmani,
2015). CD is not only tasked with automatically send-
ing the integrated code, but also ensuring the code is
sent with no errors or delays. This phase helps devel-
opers to incorporate new code into the main branch
with a high degree of consistency. The CD part of
the cycle is also responsible for checking code qual-
ity and performing checks to ensure a functional build
can be released into the production environment.

3.4.3 Continuous Deployment

CI/CD process made massive changes in codebase
manageable and possible during the daytime. Contin-
uous deployment is another ”CD” with a purpose be-
yond continuous delivery (Shahin et al., 2017). Con-
tinuous deployment tries to deliver these changes to
end-users at a more accelerated speed. This approach
tries to automate the deployment process and de-
liver up to hundreds of deploys in a day. Currently,
tech giants like Facebook and Flickr have adopted
this method. Software as service solutions and API-
Driven(Goteti, 2015) software facilitates projects to
have daily updates hidden from the end-users (Savor

et al., 2016). In conclusion, continuous delivery re-
leases software to deployment as soon as the tests
have passed in development. It will make features
time to market even lower than before.

4 SECURITY IN SOFTWARE
DEVELOPMENT

When it comes to software security, there are many
possible approaches, one of them is the security of
the product itself which may contain the issues that
the code and builds carry full security features. To
ensure this, engineers can implement a variety of
methods such as periodically scanning for vulnerabil-
ities in software, both static and dynamic code; con-
stantly checking and updating libraries or dependen-
cies; make sure not to use sensitive hard-coded vari-
ables; etc. Essentially, product security is to ensure
that products that are deployed will not create vulner-
abilities that could compromise the system on which
the product is installed. On the other hand, security
problems of the development process should also be
considered. Since systems used to develop products
may be subject to attacks from cyber criminals or ad-
versaries, engineers must ensure thorough construc-
tion of a pipeline or SDLC. This system must be con-
sidered carefully in terms of security such as confi-
dentiality, availability, and integrity. In general, the
two views above are similar to the two sides of the
coin, they must coexist and support each other so that
the product can be considered secure (Assal and Chi-
asson, 2018; Talukder et al., 2009).

4.1 DevSecOps

In a traditional software development process, secur-
ing a product was often done independently by the
security team, separate from the development team.
However, a prerequisite for DevOps is speed, the
combination of the development team and the op-
eration team and leaving the security team to work
separately does not meet the needs of the industry.
Hence, in recent times, the DevSecOps concept was
posed as an upgrade for DevOps, when it was aimed
at integrating additional security into DevOps proper-
ties (Myrbakken and Colomo-Palacios, 2017).

DevSecOps arise with the requirement of secure
output from the DevOps process. However, it is chal-
lenging in real-world implementations to introduce
security to the DevOps process. Firstly, there are sev-
eral toolsets available for DevSecOps. This brings in-
consistency between each organization’s implemen-
tation. Operations teams may be proficient in differ-

ent programming languages and tools written based
on them. There is currently a lack of standard De-
vSecOps implementation specifications. This leads to
different opinions between operation teams with other
parts of the organization. In addition, new DevOps se-
curity tools have to be tested themselves to ensure the
overall security of the organization (Rajapakse et al.,
2021).

4.2 Security Requirements Of The
Organization

Security baselines are a group of pre-defined config-
urations and checks which ensure that the develop-
ment environment complies with companies’ overall
security policies. These policies are established by
well-known tech giants or even governmental organi-
zations to keep businesses and companies safe from
cyber threats. For instance, ”Microsoft Windows se-
curity baselines”2 is an example of security base-
lines provided by Microsoft corporation.Companies
can have different definitions of security baseline in
their environment. For instance, a company providing
an online Application Programming Interface (API)
for travel ticket booking may have a lower security
baseline compared to a financial company handling
sensitive transaction data. Security baselines can be
broken into sections and applied as release gates. Re-
lease gates are critical checkpoints in an SDLC. These
gates halt specific software release processes in case
of reaching a security weakness threshold (Chung,
2018). Introducing several release gates at once will
exhaust developers by lots of failed builds and re-
leases. They have to be introduced gradually while
the development team gets to know the new workflow
of the pipeline. It is possible to integrate release gates
in several SDLC stages like design, coding, testing,
and deploying. As a result, these security checks can
improve overall software quality and security in long-
term usage.

4.3 Where To Start

Defining a security testing baseline starts by estab-
lishing minimum expectations from tests to be valid.
Several industry-standard references have been al-
ready working on application security baselines in the
past. The Open Web Application Security Project
(OWASP) is the leading foundation supporting open
source software security projects. The OWASP
Application Security Verification Standard (ASVS)3

2https://docs.microsoft.com/en-us/windows/security/
threat-protection/windows-security-baselines

3https://owasp.org/asvs

project tries to document several in-depth verifica-
tion steps to ensure application security at different
security baselines. ASVS consists of 3 levels which
makes it suitable for different companies with differ-
ent security requirements. In this paper, we are trying
to cover basic ASVS recommendations which can be
covered by automated tests. This includes code scan-
ning, static and dynamic security testing, and moni-
toring.

5 INSERTING SECURITY IN THE
CI/CD PIPELINE

It is possible to insert automated security measure-
ments to improve and assess the security of software
before it reaches the users. The following sections
present different parts of the pipeline which can be
strengthened by security measures.

5.1 IDE Plugins And Linters

Text editor applications are being used every day
by developers to produce and commit code. Error-
checking tools created as a plugin for text editors
are commonly called linters. E.g., the Visual Studio
code editor maintains several linters like ESLint4 and
SonarLint5. When using linters, several bugs and se-
curity issues are prevented even before reaching the
pipeline. In addition, it is possible to integrate linters
in the pipeline process. Each alternative has advan-
tages and disadvantages. Plugin linters will reduce
the pipeline running time because it has already fixed
parts of issues before reaching the pipeline, and it is
less likely that the pipeline fails.

5.2 Static Code Analysis

Static Code Analysis (SCA)tries to discover vulnera-
bilities while the code is not in running mode. This
type of analysis is often associated with white-box
analysis due to access to the source code of the appli-
cation. SCA uses methods like Taint Analysis (Kurni-
awan et al., 2018) and Data-Flow Analysis (Kronjee
et al., 2018). Taint analysis tries to detect patterns re-
lated to injection vulnerabilities. It tries to identify
tainted variables and traces them to possible vulnera-
ble functions known as a ‘sink’.

4https://eslint.org/docs/about/
5https://www.sonarlint.org/features/

5.3 Dynamic Security Testing

Dynamic Application Security Testing (DAST) tools
try to have a black box view of the application. There
is no prior knowledge about the codebase or database
design for these tools while running. The goal is to
simulate and assess conditions in real life when the
software is exposed to the network. This type of
tool is developed to be running on already deployed
apps in a simulated production environment. Organi-
zations normally deploy software in specific environ-
ments via containerization applications like Docker6

and Kubernetes7. Containerization tools will give a
suitable environment for the app to run over particular
firewall and storage configurations. DAST tools try to
access the application deployed on containers over or-
dinary network connection means like HTTP requests
or database connection requests (Sönmez and Kiliç,
2021). Requests to the application can be tweaked to
do a stress test on the whole application. Scenarios
such as Denial of Service attacks and other known at-
tacks can be simulated. Zed Attack Proxy (Bennetts,
2013) and Burpsuite8 are examples of dynamic appli-
cation security tools. DAST tools consist of mecha-
nisms to bypass some security measures to go deeper
into the scanning process. For instance, it is possi-
ble to bypass authentication by injecting authentica-
tion data in requests. As a result, organizations can
estimate their software resistance to known attacks in
case somebody acquires credentials and bypasses the
authentication checkpoints.

6 PROPOSED SOLUTION

We aim to improve the software security pipeline in 3
main areas; development, pre-deployment, and post-
deployment phase. The goal is a solution that has
minimum configurations per repository, and can eas-
ily reproduce outcomes on different pipelines. This is
important in the later adoption of the work since it can
be implemented with a minimum of additional burden
on the development team.

6.1 CI Tools

The first step is choosing the right CI tool. The first
important feature to be considered is the ability to host
the product on-premises or on the cloud. The second
factor is integration and support. Finally, container-

6https://www.docker.com/
7https://kubernetes.io/
8https://portswigger.net/burp/enterprise

ization support is a must for the tool chosen for secu-
rity testing. Containers enable developers to develop,
test and deploy software more reliably by keeping the
environment continuously the same. We have chosen
Github Actions9 as our tool since it meets all require-
ments mentioned above.

6.2 Security Tools

Github Actions combines features of a pipeline with
Github source control and repository management ca-
pabilities. Individual software developers and compa-
nies active in cyber security can release tools based on
the Github Actions platform. It brings new capabili-
ties for security players in the market to integrate their
tools with the platform.

6.3 Scanning & Dependency Checking

Codebases are always prone to include vulnerabili-
ties that are easily detectable by machines. Although
there could be possible logical vulnerabilities in ap-
plications, it is possible to prevent others by auto-
mated pipelines. There have been several compar-
isons between SCA tools (Mantere et al., 2009; Kaur
and Nayyar, 2020). We have tried several tools like
SonarQube, Snyk, and Fortify; here there is not a clear
winner since each tool is presenting better features
in different sectors. E.g., SonarQube provides exten-
sive capabilities in detecting code smells and provid-
ing code review while Snyk is better at dependency
scanning and security measures.

6.4 Open-port Scanning

We have used Github Actions to provide monitoring
capabilities. A script will run the NMap10 applica-
tion at different time intervals during the day. NMap
is a free open source software that is widely used by
network administrators to perform network discov-
ery and auditing. We have used NMap software in
our automated pipeline to watch over the company’s
deployed apps and report which ports are currently
open. Later on, the company can use this data to de-
tect misconfigurations or internal mistakes which lead
to open exposed ports in their network.

6.5 SSL/TLS Evaluation

We have been working on the pipeline to provide se-
curity checks to check for SSL/TLS version and con-

9https://docs.github.com/en/actions
10https://nmap.org/book/man.html

figuration. This test will be part of the pipeline and
can be run automatically in time intervals.

6.6 Integration and Automation

Github Actions use virtual machine runner instances
to run pipelines. Each pipeline occupies portions of
the runner’s computational power and bandwidth us-
age. It is important that our automated pipeline is effi-
cient, only running tests and builds whenever needed.
It is possible to run tests on special conditions and
Github runners will initiate the action whenever the
trigger conditions are met. If all the pipeline tests run
on every push to the repositories, this will exhaust the
runners, and jobs will be in long queues before they
could be completed. In addition, specific tests like
SSL/TLS scans are time-consuming and will keep the
runners busy for longer periods. We tried to develop
smart pipelines that try to expand the runner’s idle
time by assigning pipeline triggers to persons com-
mitting the code. As an example, user experience
and UI design teams’ commits are ignored by runners.
Developers’ commits will trigger static analysis, code
coverage, and code smell pipelines. SSL/TLS scans
and port scans work in parallel in time intervals with-
out attachment to commits. Finally, commits to mas-
ter will run all possible runners to check before the
new code is added to the system (Github, 2021).

7 CONCLUSION

In this paper we have studied challenges and iden-
tified solutions for integrating security in a DevOps
Continuous Integration pipeline. We have constructed
a DevSecOps pipeline which has been deployed in a
software development organization, and preliminary
feedback is positive. For further work, it would be in-
teresting to assess the impact of the new pipeline in a
longitudinal case study.

ACKNOWLEDGEMENTS

This paper is based on the two first authors’ MSc the-
sis at the University of Stavanger.

REFERENCES

Assal, H. and Chiasson, S. (2018). Security in the soft-
ware development lifecycle. In Fourteenth Symposium
on Usable Privacy and Security (SOUPS 2018), pages
281–296, Baltimore, MD. USENIX Association.

Balaji, S. and Murugaiyan, M. S. (2012). Waterfall vs.
V-Model vs. Agile: A comparative study on SDLC.
International Journal of Information Technology and
Business Management, 2(1):26–30.

Bennetts, S. (2013). Owasp zed attack proxy. AppSec USA.
Chen, L. (2015). Continuous delivery: Huge benefits, but

challenges too. IEEE Software, 32.
Chung, A. (2018). How DevOps can use quality gates for

security checks.
Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N.

(2016). DevOps. IEEE Softw., 33(3):94–100.
Github (2021). Events that trigger workflows.
Goteti, H. (2015). API Driven development , bridging the

gap between providers and consumers.
Hegde, V. and Singh, A. (2020). Team collaboration in De-

vOps: Accenture.
Howard, M. and Lipner, S. (2006). The Security Develop-

ment Lifecycle. Microsoft Press.
Huang, C.-C. and Kusiak, A. (1996). Overview of Kan-

ban systems. International Journal of Computer Inte-
grated Manufacturing, 9(3):169–189.

Jaatun, M. G., Cruzes, D. S., and Luna, J. (2017). Devops
for better software security in the cloud. In Proceed-
ings of the 12th International Conference on Avail-
ability, Reliability and Security, ARES ’17, pages
69:1–69:6, New York, NY, USA. ACM.

Jabbari, R., bin Ali, N., Petersen, K., and Tanveer, B.
(2016). What is DevOps? a systematic mapping study
on definitions and practices. In Proceedings of the Sci-
entific Workshop Proceedings of XP2016, pages 1–11.

Kaur, A. and Nayyar, R. (2020). A comparative study of
static code analysis tools for vulnerability detection in
C/C++ and JAVA source code. Procedia Computer
Science, 171:2023–2029. Third International Con-
ference on Computing and Network Communications
(CoCoNet’19).

Kronjee, J., Hommersom, A., and Vranken, H. (2018).
Discovering software vulnerabilities using data-flow
analysis and machine learning. In Proceedings of the
13th International Conference on Availability, Relia-
bility and Security, ARES 2018, New York, NY, USA.
Association for Computing Machinery.

Kumar, R. and Goyal, R. (2020). Modeling continuous se-
curity: A conceptual model for automated DevSecOps
using open-source software over cloud (adoc). Com-
puters & Security, 97:101967.

Kurniawan, A., Abbas, B. S., Trisetyarso, A., and Isa,
S. M. (2018). Static taint analysis traversal with ob-
ject oriented component for web file injection vulner-
ability pattern detection. Procedia Computer Science,
135:596–605.

Leite, L., Rocha, C., Kon, F., Milojicic, D., and Meirelles, P.
(2019). A survey of DevOps concepts and challenges.
ACM Computing Surveys, 52(6).

Mantere, M., Uusitalo, I., and Roning, J. (2009). Com-
parison of Static Code Analysis tools. In 2009 Third
International Conference on Emerging Security Infor-
mation, Systems and Technologies, pages 15–22.

Mao, R., Zhang, H., Dai, Q., Huang, H., Rong, G., Shen,
H., Chen, L., and Lu, K. (2020). Preliminary findings
about DevSecOps from Grey Literature. In 2020 IEEE
20th International Conference on Software Quality,
Reliability and Security (QRS), pages 450–457.

McGraw, G. (2006). Software Security: Building Security
In. Addison-Wesley.

Myrbakken, H. and Colomo-Palacios, R. (2017). DevSec-
Ops: a multivocal literature review. In International
Conference on Software Process Improvement and
Capability Determination, pages 17–29. Springer.

Oyetoyan, T. D., Jaatun, M. G., and Cruzes, D. S. (2017). A
lightweight measurement of software security skills,
usage and training needs in agile teams. International
Journal of Secure Software Engineering, 8(1):1–27.

Rajapakse, R., Zahedi, M., Ali Babar, M., and Shen, H.
(2021). Challenges and solutions when adopting De-
vSecOps: A systematic review. Information and Soft-
ware Technology.

Rao, K. N., Naidu, G. K., and Chakka, P. (2011). A study of
the Agile software development methods, applicabil-
ity and implications in industry. International Journal
of Software Engineering and its applications, 5(2):35–
45.

Rehkopf, M. (2001). Manifesto for agile software develop-
ment.

Rehkopf, M. (2020). Kanban vs. Scrum: which Agile are
you?

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck,
K., and Stumm, M. (2016). Continuous deploy-
ment at Facebook and OANDA. In 2016 IEEE/ACM
38th International Conference on Software Engineer-
ing Companion (ICSE-C), pages 21–30.

Schlossnagle, T. (2018). Monitoring in a DevOps world.
Commun. ACM, 61(3):58–61.

Shahin, M., Ali Babar, M., and Zhu, L. (2017). Continu-
ous integration, delivery and deployment: A system-
atic review on approaches, tools, challenges and prac-
tices. IEEE Access, 5:3909–3943.

Sönmez, F. O. and Kiliç, B. G. (2021). Holistic web ap-
plication security visualization for multi-project and
multi-phase dynamic application security test results.
IEEE Access, 9:25858–25884.

Talukder, A., Maurya, V., Santhosh, B., Jangam, E., Muni,
S., Kp, J., Samanta, S., and Pais, A. (2009). Security-
aware software development life cycle (SaSDLC) -
processes and tools. In 2009 IFIP International Con-
ference on Wireless and Optical Communications Net-
works, pages 1 – 5.

Virmani, M. (2015). Understanding DevOps & bridging the
gap from continuous integration to continuous deliv-
ery. In Fifth International Conference on the Inno-
vative Computing Technology (INTECH 2015), pages
78–82, Piscataway, NJ. IEEE.

Williams, L., McGraw, G., and Migues, S. (2018). En-
gineering security vulnerability prevention, detection,
and response. IEEE Software, 35(5):76–80.

