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Abstract—Lack of trustworthiness, access policy flexibility, and
user privacy preservation in centralized access control systems
raise numerous security issues and reduce the collaboration
maturity of global data sharing systems. In this paper, we
propose a Self-Sovereign Identity-based, Decentralized, and Dy-
namic (SSIDD) access control system. SSIDD utilizes blockchain
technologies to build trust for untrusted data sharing networks
and ensures user privacy. Our access control provides high
access policy flexibility and security for global inter-enterprise
collaborations from a diverse industrial environment. SSIDD
authenticates its users based on their Decentralized Identifiers
(DID), which are under control of users and can be resolved into
a DID document stored on the blockchain. Our data management
technology keeps the data sharing systems safe against issues
such as data breaches, identity thefts, and privacy violations.
Besides, the authorization process of SSIDD is dynamic by
adopting several smart contracts. The transparency of rules and
agreements in smart contracts and the traceability of records on
blockchain ledger provide a high level of security and trust. For
proof of concept, we have developed and evaluated a prototype
of SSIDD. Our evaluations show that the throughput and latency
of our method are within an acceptable range.

Index Terms—blockchain, access control, self-sovereign, DID,
Web3.0

I. INTRODUCTION

Nowadays, enterprises collaborate globally and exchange
collections of data for different purposes, like scientific anal-
ysis and market research for providing better services to
their customers. Conventional approaches for data exchange
mainly rely on centralized access control systems, which have
static and limited access policies and collect sensitive personal
information for its authentication and authorization processes.
Third-party resource (i.e. cloud) providers are often involved
in handling collections of sensitive data. Moreover, because of
a lack of accountability, transparency, and audibility in central-
ized access control systems, inter-organizational collaborations
in untrusted networks are often complicated.

Non-flexible access policies lead to the immaturity of inter-
enterprise collaboration in multinational or diverse industrial
consortiums. Collecting sensitive personal information raises
a potential risk of data leakage and privacy breaches. The
intermediary computation resource involvements take the con-
trol of both personal and non-personal data from its owners,
where the integrity of data is unsecured. Rules and agreements

regarding data sharing systems are not transparent for all
involved parties. Furthermore, with centralized access control
systems, it is less likely to identify underlying issues for
security flaws, and malicious behaviors are often left without
being noticed [2] [6] [8] [16].

Our goal in this paper is to design and develop a decentral-
ized access control system for inter-enterprise data sharing,
in which the organizations involved are globally distributed,
and share the data originated from diverse sources. Therefore,
organizations must be able to decide on different access
policies for resources they share in the network. Additionally,
involved parties share sensitive data, which means that we
need to prevent the data from any abuse. Furthermore, we
require that our data sharing system preserve data privacy
and avoid personal information leakage. More specifically the
access controller must fulfill the following criteria:

Dynamic access policy: Each organization must be able
to dynamically customize its own access policy for re-
sources shared in the network, aiming to promote the
maturity in collaboration.

Self-sovereign: To cope with data breaches and privacy-
preserving violations, it must maintain data privacy by
giving full control of data to its data owner.

Accountability and transparency: All actions, rules, and
agreements in the network, both previous and present,
must be transparent for all parties. Additionally, the
system must be able to trace organizations and their
clients’ interactions in the network, so that it overcomes
the problem of trust between the parties.

Audibility, availability, and integrity: it must track all
attempts to access resources in the network and provide a
robust and fail tolerant system. Additionally, the system
must ensure that data is stored in a safe storage system
where it cannot be modified maliciously.

We propose the SSIDD, a novel self-sovereign identity based,
decentralized, and dynamic access control system. We have
developed two main components for this system, which we
call phase one and phase two, respectively. The overall aim
of phase one is to ensure self-sovereignty, and phase two is to
provide a dynamic access policy infrastructure.

Outline: In the following sections, we first present rel-
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evant background knowledge of digital identities. Then, in
Section III we introduce some of the existing access control
systems used both in centralized and decentralized networks.
Section IV describes the details of the design and architecture
of SSIDD. Section V goes through the experimental evalu-
ations of the smart contracts (SCs) of SSIDD. Section VI
introduces some related research works and discusses our
contributions. Finally, Section VII provides the conclusion of
the paper and discusses future work.

II. DIGITAL IDENTITY

A. Tradition Digital Identities

A digital identity is an identification mechanism used to
identify users on the internet. A digital identity can be a
combination of username and password used to access a
social media account, or in more complex cases, it can be
a Norwegian bank ID [26] used to connect a user to her bank
account. In the following, we discuss two different types of
existing digital identity solutions [1]:
Centralized digital identities: Users can use their digital

identities to authorize into a single application, where a
social media account is an example. A centralized digital
identity system manages the application and is controlled
either by the owner of the social media application or its
resource providers. In such systems, users can not use
their accounts to authenticate into any other applications.

Federated centralized digital identities: Users can use
one digital identity to authenticate to several somehow
dependent but different systems. Either a single central
system or a community of applications that uses the
same identification mechanism manages users’ identities.
Taking the bank ID as the example, even though one
centralized authority controls the Norwegian bank IDs,
it enables users to authenticate into a few other bank
and non-bank systems with the same identity provisioning
requirements.

B. Limitations of Existing Digital Identities

User privacy: Users have no control over how and in what
context a centralized system shares their personal identity
information.

Central authority: User’s personal information is controlled
by centralized authorities that provide authorization ser-
vices. Based on user-provided personal data, it denies
or accepts access to systems, and decides how to use,
share, and store data. Besides, most centralized authorities
are not capable of evaluating fake identities, which is
the source of many unethical behaviors on the internet
nowadays.

Limited: Despite the more flexibility the federated identifi-
cation provides to users, where issued digital identities
give access to several platforms, it has many limitations.
Firstly, the number of organizations that collaborate are
just a few, are locally centralized, and provide highly
dependent services. That is, a bank user in Norway can
not authenticate for a bank system in the United State,

or a social media authentication system is less likely
to federate with a bank. Secondly, users still do not
have control over their shared personal information. This
becomes even worse if an application uses a third-party
resource provider to store personal information. It will
then not let the application have full control over its user
data.

User experience: It is not obscure that the user experience of
centralized digital identity systems is awful. Just thinking
of how many passwords you need to remember to access
your daily used applications. The trauma becomes even
worse when you forget one password and need to go
through the process again.

Hence, it is obvious that there is a need for a more robust
and efficient digital identity mechanism that is proveable for
any application on the internet. In the following we present a
modern digital identity architecture that provides that flexibil-
ity.

C. Self-sovereign Identity

Since the emergence of web 3.0 [27], which started from
the ideas behind the Ethereum protocol, research for digital
identity systems has changed its direction toward decentraliza-
tion. It is mostly because, the federation identity mechanisms,
where third parties and central authorities are involved, will
not result in a Self-sovereign Identity (SSI) system. An SSI
system gives the control of personal data to its owner. It aims
to preserve the security and privacy challenges that traditional
digital identities undergo. To ensure user privacy and control
over personal data, we need to eliminate centralization and
third parties.

The goal of adopting Distributed Ledger Technology (DLT)
systems is to not rely on any type of central authority to
manage access or personal information of users. But with
DLTs everything will be transparent for users, which gave
them full control over how personal data is used, by who, and
where. Data availability is another benefit of adapting DLT,
where users get access to their data, modify them, and even
remove them. The web 3.0 standards documentation provides
a standard structure for the modern era digital identities, that
is Decentralized Identifiers (DIDs). The structure of DID is as
follows:

did :< method−name >:< method−specific−identifier >

The method-name is a unique domain for each organization,
and the method-specific-identifier is a unique combination of
numbers and letters within the method-name. The structure
results in a globally unique DID. Moreover, it resolves to a
DID document, which is stored on a DLT. Each DID document
can include one or more Verifiable Credentials (VC). A VC is
a sort of certificate that a user can be issued by an organization.
For example, a diploma issued from a university can be
registered as a VC. Every time a user claims that she holds a
university diploma, she can refer to her VC stored on a public
DLT.



The DID is a powerful mechanism to ensure self-
sovereignty. However, in terms of the technical aspect, the
number of challenges to obtaining its features are numerous.
One of those challenges is having an efficient access control
to a decentralized application that grants access based on
DIDs while keeping both personal data and shared information
secure [3] [13] [20].

III. ACCESS CONTROL

Access control (AC) mechanisms in traditional data sharing
systems are often centralized and access to resources is usu-
ally managed through a third-party cloud provider. Despite
many complex techniques and concepts used to regulate and
restrict access to systems, relying on a central authority is
both a reliability and security bottleneck in these kinds of
systems. Attackers will have one target to attack, and in case
of failure, an entire system can stop operating. However,
since the evolution of adopting blockchain technologies in
data sharing systems, we get closer and closer to realizing
fully decentralized access control systems. In this section, we
present and discuss some of the most commonly mentioned
access control techniques.

1) Access Control List: An Access Control List (ACL) is
the simplest and the most static access control technique. It
consists of a list of network members along with their access
permissions in a network. ACLs are static, which means that
policies are defined as general purpose and do not specify
any conditional cases. Moreover, ACL is used widely in
centralized enterprise applications and IP networking systems
as well as permissioned blockchain applications. However, as
mentioned, a standard ACL mechanism has little flexibility for
an environment with the need of dynamic access rules. Thus
despite its simplicity, it will not be a good fit for environments
that require more policy variability [14] [17].

2) Role Based Access Control: A Role-Based Access Con-
trol (RBAC) model controls access to a system by putting
each subject (i.e. human, machines, etc.) in one or more
predefined roles. Each role grants permission to access one
or more specific network objects (i.e. resource(s)), which are
predefined in a network’s access policy. In RBAC models,
only subjects that have been assigned a role have permission to
access resources. Furthermore, the subject’s role(s) is assigned
based on their authorization level and their distinct role in
the network. Finally, an RBAC system must make sure that
subjects are granted permission to resources at the level of their
authorization status [22]. RBAC is somehow more flexible than
ACL in terms of access policies for organizational level access
control systems. However, the technique does not provide any
flexibility for inter-organizational systems.

3) Attribute Based Access Control: A role-based mech-
anism for access control does not fit the need of systems
with more complex and dynamic access rules. Thus, based on
this idea, Shamir [23] proposed an Identity-Based Encryption
(IBE) method. In this technique, a user will be supplied by
secret keys from a central authority, where each secret key is
mapped directly to the identity of the user. The key is then

used to encrypt data that a user wants to share. Other network
members that hold a public key associated with the secret key
can then decrypt the data. This method is robust in such a way
that it ensures both data security and access control. But, still,
it does not provide a totally fine-grained access control where
other conditions can be applied to access a system or a set of
data. Additionally, it leans on a trusted central authority system
that authorizes users, which can be challenging in untrusted
and decentralized applications.

Thus, an Attribute-Based Encryption (ABE) method is
proposed by Sahai [21]. It is basically an extension of IBE
where it takes steps further toward a more dynamic access
control mechanism and replaces identities with attributes. In
ABE, an attribute can be anything that characterizes a network
participant, a set of data, or an environment. It provides high
flexibility and dynamicity to specify access rules. Besides, the
Attribute-Based Access Control (ABAC), which is an access
control technique made of ABE, also takes care of security
of data by its encryption techniques. Hence, it has wide use
cases in both centralized and decentralized applications that
require more complex and involved access rules [9].

However, even though an ABAC does not need a central au-
thority for authorization of identities as in IBE, it still requires
a central key management system that controls and provides
cryptographic keys based on access policies, attributes, etc.
Additionally, ABAC relies on many detailed operations and
can add lots of overhead, which can worsen the performance of
any system, including the more performance-critical systems,
such as blockchain [5] [12] [28].

A. eXtensible Access Control Markup Language

Policies

PIP PDP PAP

Attributes

Client

1: Access request

2: Fetch policy3: Fetch attributes

4: D
ecision

PEP

Fig. 1: An overview of the architecture of XACML.

ABAC consists of several different components and tech-
niques that can be difficult to manage and have low flexi-
bility to environmental changes. To overcome this issue, the
eXtensible Access Control Markup Language (XACML) [24]
technique was proposed. It is basically a decoupled ABAC
system, where it separates policies from resource attributes
in an organized manner. Figure 1 shows an example of an
XACML access control architecture. Each component has the
following responsibilities:



Policy Administration Point (PAP): One or more policies
can be assigned to the system and managed through this
component. Policies are represented as XML markups
and contain policy ID, attributes, and rules fields. The
attribute field defines a set of user and resource attributes
to be determined for the access decision, and the rules
assign the required state of each attribute.

Policy Information Point (PIP): Subject and object (i.e.
users and resources, respectively) attributes are also
stored in XML format. The PAP component manages
these attributes and maps them to their associated poli-
cies.

Policy Decision Point (PDP): This is the main component
of the XACML technique. Here relevant policy and
attributes are fetched from PIP and PAP. Then based on
the rules of the policy and corresponding subject and
object attributes, the PDP can decide on an access request.
The PDP forwards its decision to the gatekeeper (i.e.
PEP) component.

Policy Enforcement Point (PEP): This component is the
gatekeeper of the system. First, it redirects access requests
from clients to PDP. Then, after the PDP component
has made a decision, the PEP allows or denies access
to requested resources.

By utilizing the XACML technique, the access control system
will have high flexibility for integration into any type of appli-
cation, both centralized and decentralized. The unique feature
of XACML for decentralized applications is its decoupling
of the access control mechanisms into several components
where we can execute each part in a smart contract. Besides,
it ensures fully dynamic access control for any single resource
in the system by making it possible to assign a unique policy
rule to each resource [4].

IV. PROPOSED APPROACH

We aim to build a self-sovereign and dynamic access control
system by utilizing DLTs for untrusted networks. We have
designed a novel solution that fulfills security and trustworthi-
ness requirements in global data sharing systems. It consists
of several components and technologies that work in parallel
to provide an efficient and powerful access control system.

We have decoupled the workflow of SSIDD into two phases
to make it more scalable and flexible. An SSI-based phase
and a trust-oriented and dynamic phase. Thereby, we ensure
that it is scalable for managing resources. Depending on
the arising performance bottlenecks, and flexibility for using
different platforms and frameworks in each of the two phases.
Accordingly, based on use cases and interests and by keeping
SSIDD’s design as a baseline, it should be straightforward
to apply different architectures to our SSIDD system. Fur-
thermore, security is the other concept that we have carefully
considered in our design. The SSIDD is an access control
system that ensures user privacy, data integrity, availability,
and accountability. We ensure the security from the time a
client requests access until SSIDD makes an access decision.
Figure 2 shows an overview of the architecture of SSIDD.
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Fig. 2: An overview of the architecture of SSIDD. Note that
the arrows presents workflow of an access request to read
some resource X from the Inter Planetary File storge System
(IPFS) .

It is a complex system that consists of several components.
However, in the rest of this section, we will clarify the
following: The idea behind the design, how the components
interact with others, the purpose of having each component in
each phase, and our security considerations in the design of
SSIDD.

A. Phase One

In the first phase, we have four main components. An HLI
ledger, a Trust Anchor (TA), a client, and a gatekeeper. We use
HLI as our DID platform. The TA is a component that we use
to issue VCs to a client. The client component models an HLA
agent that provides DIDComm services for users. In a practical
situation, a TA can be an administrator of an organization of
a data sharing network, and a client component can serve as a
chief executive officer, an employee, or even an administrator
of the organization. Moreover, the gatekeeper presents the PEP
component of an XACML-based system, with the exception
that it also operates as an HLA agent.

As presented in Fig. 3, the workflow of phase one starts
from a TA offer and issues a VC to a client. Then, the
client communicates with the gatekeeper and requests access
to a resource. The gatekeeper receives the client’s request
and verifies that the client holds enough credentials to get
permission to the network. Finally, after successful verification



of the required VC, the gatekeeper redirects the client further
to the second phase of our access control system, where several
communication steps are involved.

TA Client Gate keeper Access controller

2: Init a secure connection

6:  Init a secure connection

3: Offer credential

4: Accept the offer

5:  Issue credential

7: Request access to X

IN
D

Y 
- L

ED
G

ER

1: Register Credential

8: Fetch policy N => X

9: Policy N

10: Proof Request => Policy N

11: Present proof

12: Verify Proof Presentation

13: Verified (bool)

14: Redirect access request

Fig. 3: First phase communication process of a read request.

B. Phase Two

Phase two of SSIDD is where the logic of our dynamic
access control is located. As in the first phase, here we also
have several components that communicate across different
platforms. One of the core components of phase two is the
SSIDD-server. In our case it is a Google Remote Procedure
Call (gRPC) [11] server that communicates with the gate-
keeper, HLF network(Hyperledger Fabric), and an off-chain
database. It wraps client requests into a required format and
forwards those to the HLF. Our SCs follows the XACML
technique, which decouples the access control components
and provides a dynamic system. However, our design has the
following exceptions from an XACML model:

• We have a decentralized system; our access control
components are SCs that are implemented in a transparent
and decentralized network.

• A self-sovereign access control system; we do not store
any sensitive client information in the system. We only
store clients DID to enable auditing clients’ activity in
the network and ensure the security of the SSIDD. We
simply count the number of times a user is banned and
block her from making more requests. By doing this we
avoid a Denial Of Service (DOS) attack where a system
is halted by setting huge traffic against the network.

• We have additional components; as illustrated in Figure 4,
we have an Audit-SC which is not a part of standard
XACML. Besides, we have the database SC (DB-SC),
which is isolated from the public network and invoked
by the PDPSC to retrieve a Hash-ID that is associated
with the off-chain database.

More specifically, we have five SCs that communicate with
each other before making an access decision, which are as
follows:
PIPSC: manages resource attributes.

PAPSC: manages policy administration.
DBSC: keeps track of transaction hashes offchain. Its func-

tionalities are isolated from outside of network.
AuditSC: records invalid access request attempts.
PDPSC: makes access decisions based on information it

retrieves from the other four contracts.
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SSIDD-server PDP-SC PAP-SC PIP-SC Audit-SC DB-SC

Fabric

1: Access request (read) 2: Access to X

IPFS

5: Fetch Policy N => X

4: Resource X attributes

6: Policy N

8: Calculate an access decision

7: Fetch Nr of Bann for client C

8: Nr of Bann

9: Fetch Hash ID of Resource X
10: HASH-ID

11: Access Dcision
12: Fetch Resource X

3: Fetch Resource Attributes

13: Resource X
14: Decision & Resource

Fig. 4: Second phase communication process.

The downside of this design is that it will have reduced
throughput and higher latency in comparison with centralized
access control systems. But, the upside of our design is that
by decoupling access control components, we are able to
develop a self-sovereign and fully dynamic access control
system. Moreover, we ensure transparency, trust, security, and
accountability through our decentralized network.

It is worth mentioning that in this section, we have only
presented the transaction flow for a resource read request. In
our design, we have considered full Create, Read, Update, and
Delete (CRUD) operations for accessing resources in addition
to CRUD operations for managing policy objects and adding or
removing organizations to the network. However, the design
of all access requests will differ in small details. Thus, in
general, a read request can present the whole idea of our
SSIDD system.

V. EVALUATION

In our experimental evaluations, we develop a Hyperledger
Caliper [15] benchmark module for testing and benchmarking
our chaincode. We test the performance of SCs with one xlarge
VM, which runs in the local data center. In Table I we present
details of our testing environment.

OS Ubuntu bionic 18.04.6 LTS
8 x CPU Intel(R) Xeon(R) CPU E5-2640 v4 2.40GHz

RAM 16 GiB
Docker 20.10.14

Go 1.17.9 linux/amd64
Fabric 2.4
Caliper v0.5.0

TABLE I: Specification of our test environment.
Our HLF network consists of three peer nodes (each rep-

resents one organization), one orderer node, and a Fabric
CA node. In the following, we present our benchmarks for



the DecideRead and DecideWrite methods from the PDPSC
contract. We measure throughput and latency by changing
the number of clients, block size, and batch timeout con-
figurations. The first method makes an access decision on a
read request. It reads a resource, policy, audit, and database
transaction from the ledger’s global state by invoking their
respective contracts internally. Additionally, it evaluates policy
rules against a user’s provided attributes. Furthermore, the
DecideWrite method makes an access decision on a write
request, if a user wants to share a set of data or add a policy
to the network. The method goes through the same processes,
except that it does not invoke the PIPSC and DBSC contracts
to read resources and database transactions from the global
state. Thus, it goes through fewer steps than the DecideRead
method.

Furthermore, we ran each of our experiments in three
rounds. In the first round, we warm up the Caliper with 200
transactions. In each of the second and third rounds, we submit
2000 transactions with a transaction rate of 500 per second
(tps). The benchmark result that we present in this section is
the average of the two last rounds.
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Fig. 5: Throughput and latency of DecideRead and De-
cideWrite of PDPSC contract in terms of number of clients
with 1000 tps.

Figure 5 shows that when the number of clients increases,
we observe that throughput also increases. The increase con-
tiues until we have 20 clients. After that, it starts to degrade.
The latency does also show an increase by increasing the
number of clients. The overall performance is acceptable for a
blockchain application. But, for this set of tests, we have used
default values for block size and batch timeout configurations
of HLF, which has a maximum of 10 transactions for block
size and 2 seconds for the batch timeout. These metrics have
key roles in the performance of a blockchain network. In the
following, we present our result of changing the block sizes
and batch timeouts.

Finding an appropriate block size is critical for any per-
missioned blockchain network, and HLF is no exception.
Larger blocks take more channel bandwidth, require more
computational resources, and transactions need to wait longer
to be confirmed. Batch timeouts also have somehow the same
role. As shown in Figure 6 and Figure 7, we have tested several
block sizes and batch timeout configurations to fine-tune the
performance of our blockchain network. In the first test, we

jump from the default HLF configuration of 10 transactions per
block to 200 transactions. The performance shows a significant
improvement compared with our result in Figure 5. However,
for the DecideRead method, we reach the global maxima
with a block size of 600 and a batch timeout of 4 seconds.
The DecideWrite method goes through fewer steps and the 2
second batch timeout seems to be the best option. However,
as the latency of this method is lower, the throughput still
increases even after 1000 transactions per block. Besides, the
latency also does not increase extensively.
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Fig. 6: Throughput and latency of DecideRead in terms of
block size and batch timeout (bt).
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Fig. 7: Throughput and latency of DecideWrite in terms of
block size and batch timeout (bt).

A. Security Evaluation

Starting from the phase one component of the architecture
of SSIDD, we use DID based communications to ensure user
privacy. But we do also ensure that SSIDD is secure against:

Data breach and information leakage: With our ef-
ficient data management technique, we do not collect
personal information on our servers. Accordingly, we will
not be a target for attackers aiming to steal personal
information.
Privacy violations: There is no way that we violate
someone’s privacy since the personal data is immediately
removed from our servers after the SSIDD makes an
access decision.
Identity theft: Each client has a unique DID store in
the HLI ledger that we can recover if it is lost or
faked by anyone else. Besides, clients’ identity attributes
and credentials are held secured by cryptographic keys,



which makes it infeasible for someone to access DID and
credentials without holding the keys.

Moreover, in phase two, the SSIDD-server communications
with other components must happen through secure protocols,
such as Transport Layer Secuirty (TLS) [25]. With TLS,
communications are encrypted after an efficient handshake
mechanism. Thus, it ensures that information transmitted from
the different components is secure and immutable.

Moving further to our smart contracts and HLF, here we
ensure several potential security vulnerabilities that can occur
with any other centralized system, among others:
Accountability and auditability: With the traceability of

the HLF ledger, where all state changes are recorded, we
ensure that every action in the network is recorded and
transparent for all parties. Thus, any malicious behavior
can easily be tracked.

Availability and single point of failure: The system relies
on a CFT consensus protocol. Therefore, in case of
any failures, we still have available servers to provide
services. Besides, we cope with the single point of failure
problem, which is one of the drawbacks of most central-
ized networks. However, this depends on the computing
resources available.

Data integrity: Records on the HLF ledger are immutable.
Besides, for the offchain storage, we ensure integrity
by using IPFS, which uses a blockchain based data
structure to store data. Additionally, we submit a hash of
offchain data to our HLF ledger, which can also ensure
the integrity of data in case anything happens to IPFS or
if replacing it with any other storage system.

Finally, we want to add that the transparency of our smart
contracts and the two blockchain ledgers, adds a unique level
of security and trustworthiness in SSIDD.

VI. RELATED WORK

Deters et al. [19] propose a distributed ABAC system
based on XACML architecture for a permissioned blockchain
network. The proposed system utilizes the decoupling feature
of the XACML method and Smart Contract (SC) to develop
a robust and dynamic access control. The three main SCs are
PIP, PAP, and PDP, which manage resource and user attributes,
policies, and a final decision, respectively. They use the
Hyperledger Fabric (HLF) as their permissioned blockchain
system, and store policies and attributes onchain in the form
of JSON objects. The blockchain is used as an access control
for an off-chain organization. Upon an access request from a
client, the offchain organization routes the request to the HLF
network. Then after the PDP has made an access decision, it
redirects its decision to the offchain platform. The evaluation
results [19] show that the proposed technique is efficient both
in terms of security and performance. However, user attributes
are stored in the blockchain, while users have no control over
them. Collecting user data, specifically onchain, is the most
critical part of this approach.

Our solution is similar to this approach in such a way that
we also use the XACML approach to ensure dynamicity, and

use blockchain technology to ensure transparency, auditability,
and trust. However, our approach is different in several cases.
First, we ensure the integrity of resources stored offchain
by implementing an additional smart contract that traces the
offchain transactions. Next, we also ensure to block users
from making more requests if a limited number of illegal
access requests is reached. We manage this functionality
by implementing a smart contract that records users’ illegal
activities. Lastly, the most important difference is that we
ensure user privacy and do not collect personal information
either onchain or offchain. Our access control system consists
of two parts. The first part ensures policy dynamicity, data
security, and trust, and the other part to ensures user privacy
and preserves systems from potential security vulnerabilities
that arise because of collecting user data.

SISBAC is an access control system based on SSI and
XACML proposed by Belchior et al. [4]. The system uses HLI
and Hyperledger Aries (HLA) for VC creation and approval,
and runs the XACML components in a centralized system.
It focuses on user privacy and control of data by adopting
an SSI based access control system. Thus, users can control
their personal sensitive data in their DID wallets. Upon a
user’s request for access to resources, the system provides
a requirement schema in form of a Verifiable Presentation
(VP) request and the user can decide what to share. The
system executes a set of operations in centralized XACML
components and decides on access requests. The system is
highly efficient in terms of ensuring user privacy, user control
over personal data, and the dynamicity of the access control
policies. The performance bottleneck of the system lies in
the process of connection between the user and a verifier
component which runs as HLA agents. Otherwise, it shows
high throughput and an acceptable range of latency.

The most important difference between SISBAC and our
approach is that we utilize decentralized technologies for the
implementation of XACML. e ensure that:

1) Our access control system is adaptable for any untrusted
network.

2) By tracing a record of all activities in a decentralized
ledger, we ensure that users are accountable for their
behaviors in the network.

3) We guarantee that policy rules and agreements are
transparent for all parties.

4) In decentralized systems, based on Crash Failure Tol-
erance (CFT) and Byzantine FailureTolerance (BFT)
consensus algorithms, if one server fails, the rest of the
network can continue operating, i.e., there is no single
point of failure problem in our proposed system.

5) We ensure integrity of our resources stored on- and off-
chain.

The other noteworthy difference is our additional com-
ponents in form of SCs, which ensures data integrity and
preserves unnecessary and maliciously high workloads against
the network.

Ding et al. [7] propose an RBAC method for federated data
sharing systems running in permission decentralized environ-



ments. The proposed technique is similar to an ABAC method
in such a way that they use the concept of attributes but in a
unique manner. In their federated system, a user has acquired a
set of dynamic attributes represented in binary upon her role in
an organization. After requesting the access to the data-sharing
system, SCs evaluate the attributes and the level of authority
of the user, and if valid, she gets access to the resources she is
allowed to. The difference between this method and an ABAC
is that any cryptographic key mechanism and consequently,
any symmetric encryption method is not used. Removing the
cryptographic operations can indeed increase the performance
of the network. Additionally, the proposed technique, they
do not rely on a central key management system, which has
significant importance in decentralized systems. However, the
difference between this approach and SSIDD is that it does not
ensure user privacy. Besides, the access control is not flexible
for inter-organizational systems.

Rong et al. proposed an approach named OpenIaC, which
aims to provide services based on the principles of Zero
Trust Architecture (ZTA) among the federation of connected
resources based on Decentralized Identity (DID) [18]. Our
proposed approach complies with the principles of OpenIaC,
and supports fine-grained access control for shared resources
managed by blockchain. Geng [10] proposed the use of
blockchain as an access management infrastructure for fed-
erated learning systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the SSIDD, a blockchain
empowered and self-sovereign access control system. Our
systems rely on two DLTs, where for our proof-of-concept
we used the Hyperledger Indy (HLI) and HLF, respectively.
We used HLI to ensure user privacy and avoid personal data
security issues such as privacy breaches. To authenticate the
users, we do not collect personal information on our system.
We utilized the HLF to provide a secure, trustable, and flexible
access policy architecture, where we develop several SCs each
with a unique purpose. Additionally, the decoupled access
policy infrastructure that we developed in our SCs, eases the
management of the dynamicity of the SSIDD. Our experimen-
tal evaluations show that we can increase the performance of
our SCs by reconfiguring the HLF network’s block size and
batch timeout configurations. However, it should be based on
the expected workload of an application that utilizes our access
control system.
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