
The Quality Triage Method:
Quickly Identifying User Stories with Quality Risks

Gunnar Brataas∗, Inger Anne Tøndel∗†, Eivind Okstad∗

Ola Løkberg∗, Martin Gilje Jaatun∗, Geir Kjetil Hanssen∗, Thor Myklebust∗
∗SINTEF Digital, Trondheim, Norway

{gunnar.brataas, inger.a.tondel, eivind.okstad, ola.lokberg, martin.g.jaatun, geir.k.hanssen, thor.myklebust}@sintef.no
†Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract—Quality requirements often receive insufficient atten-
tion, both in agile and in traditional software development. This
paper describes the quality triage, a quick, agile method in which
user stories or features with quality risks are identified. This
paper shows how the four qualities scalability, security, safety,
and availability are scored at short expert meetings — triages. In
this way, quality risks are made explicit and can be immediately
addressed. We illustrate the method with a scenario involving
semi-autonomous cars.

Index Terms—quality requirements, non-functional require-
ments, agile software development, DevOps, large complex sys-
tems, scalability, security, safety, availability, ATAM

I. INTRODUCTION

Most software engineering methods have requirements man-
agement at their core. Numerous schools have tried to capture
the best practice for such management. These practices range
from methods that seek to capture and structure nearly all
requirements early on, to methods that build the understanding
of requirements as an integrated part of the development of the
solution. However, most methods seem to share an excessive
focus on capturing functional requirements, which is natural
as we develop a system to solve tasks or perform operations.
If we look at agile methods [1] — which seems to be the norm
in the software industry today — the principle of the evolving
product backlog and the frequent feedback from the product
owner (PO) mostly emphasizes the needs for function and not
so much the quality aspects.

Functional requirements are concrete, relatively easy to
express, and have visible value. Since quality requirements
often span the complete solution, they typically suffer from the
“curse of the commons” where many functions and customers
may benefit, but without anyone having clear ownership of
the requirement [2]. Quality requirements commonly end up
being implicit and unspecified, and may only really surface
when the system is in operation [3], [4], [5], according to the
fix-it-later approach [6].

Although functional requirements are commonly prioritised
over quality requirements in agile projects [7], [4], [8], [3], this
does not mean that quality is unimportant. A system offering
all functions required by PO, but which fails to meet quality
requirements, such as for scalability or security, is a poor

system. However, this does not define the complete challenge.
Mastering a specific system quality, for example how well
it scales, or how secure it may be in given situations, is not
enough. We postulate that quality requirements are related, and
must be understood and managed together. This is especially
important for complex systems.

For example, a remotely controlled oil-well system will have
quality requirements addressing security (should withstand
attacks), safety (should not cause harm or damage), availability
(should not break down), and scalability (should not fail due
to heavy workload). Each of these types of qualities can be
managed by themselves, for example, by using a host of
techniques for analysis and management, like hazard analysis,
vulnerability analysis, or by modelling system performance.
But what about their potential dependencies? If this example
system — which needs to be both safe, available, secure and
scalable — fails in one aspect (e.g. being hacked), what would
that mean for the safety quality, as an example? Or, what if the
system doesn’t handle the workload, could that expose security
vulnerabilities? For the system to be safe it may need to
shut down, indicating it would break availability requirements.
These complex questions with no simple answers serve as our
motivation for this paper.

Another motivation is the need for a manageable method to
handle quality requirements, to reduce the potential of being
overwhelmed. Although one may have good techniques to
handle individual qualities, having to integrate a plethora of
such techniques into a project can result in a heavy approach,
even though the techniques in themselves may be relatively
light-weight [9].

In this paper, we propose the quality triage method to
quickly identify areas to focus on when it comes to quality.
The concept of a quality triage is borrowed from emergency
medicine, where a doctor quickly determines if a person
requires immediate treatment or can wait. Similarly, a quality
triage is an expert group meeting to quickly identify the
areas with most quality concern, where further effort and
coordination are required. This helps the project to assign
appropriate priorities both at the early stages and throughout.
A concrete approach for addressing all qualities together
makes the process manageable. This is particularly relevant for
large, complex, agile projects with tough quality requirements.

The paper is structured as follows: Section II gives an978-1-7281-9690-9/20/$31.00 c©2020 IEEE

Author version (postprint) - presented at the 2020-2021 Societal Automation Conference
Copyright (c) IEEE, Published version available at https://ieeexplore.ieee.org/abstract/document/9507110

overview of related work. In Section III, we describe the
quality triage approach. Section IV applies the method to
a scenario from autonomous cars, where we address four
qualities: scalability, security, safety and availability. The con-
tribution of the paper is discussed in Section V. Section VI
concludes the paper and outlines further work.

II. STATE OF THE ART

It is well documented that neglect of non-functional re-
quirements is common in agile development [7], [4], [8], [3].
Studies point to different reasons why this is the case. Behutiye
et al. [3] performed a systematic mapping study (N=156) of
quality requirements in agile and rapid software development
[3] identified the following top five challenges: a limited ability
of agile software development to handle quality requirements,
time constraints due to short iteration cycles, limitations in
testing quality requirements, neglect of quality requirements,
and lack of an overall picture of quality requirements.

Ramesh et al. have pointed to customers’ focus on core
functionality and their lack of recognition for the importance
of non-functional requirements at an early stage [4]. Ramesh
et al. described the state of affairs in the following way: ”Of
specific concern to a majority of the organizations in the
study are operational scalability and security of systems. With
the focus primarily on delivering functionality to the users
as early as possible, these concerns typically do not receive
much attention during early development cycles. Also, in the
absence of a detailed design, the non-functional requirements
were either typically not understood or explicitly specified at
the appropriate time, or negotiated carefully to understand
the trade-offs involved. The inadequate attention given to
understanding and implementing non-functional requirements
makes it harder to incorporate them as the system grows
through successive development cycles. Also, without clear
specification of the quality requirements, developers may make
design choices that are arbitrary, and this makes it difficult to
assess whether the system meets the real requirements” [4].

Based on a systematic literature review, Alsaquaf et al. [9]
point to limitations in the available techniques but also to char-
acteristics and what is often considered strengths of the agile
development process itself (“the role of the product owner,
the use of user stories”), suggesting that agile development
projects are prone to neglecting quality requirements. There is
a potential over-reliance on the Product Owner (PO) [9], with
the risk of the PO hampering inclusion of quality concerns.
Additionally, the format of user stories may not be well suited
to document quality requirements and their dependencies.
Alsaquaf et al. point out the need for a holistic approach
to quality and non-functional requirements overall. In their
systematic literature review they identified many proposals for
integrating specific types of quality requirements into agile
development, but they point out that adopting separate methods
for the different qualities is not a viable solution as it will
lead to a heavy approach to quality requirements management.
Limitations in the available techniques may also be a concern
[9], and coming up with adequate techniques is challenging.

Alsaqaf et al. [10] additionally performed an interview study
with 17 practitioners working on large-scale agile projects
in six organisations. The study resulted in identification of
15 challenges grouped into five classes, 13 mechanisms that
underlie these challenges, and nine practices to meet these
challenges. Several of the challenges and underlying mech-
anisms are related to the relation between different types of
quality requirements. Examples include hidden assumptions,
sub-optimal priority assignment, late detection of quality re-
quirements’ infeasibility, focusing on a specific viewpoint or
component, and losing sight of the big picture. Additionally,
there were challenges related to elicitation and overlooking
sources of quality requirements. The challenges were managed
using assumption wiki-pages, multiple product backlogs, auto-
mated monitoring tools, by reserving parts of the sprint for im-
portant quality requirements, by doing sprint allocation based
on multiple product backlogs, by establishing a preparation
team, a components team and a quality requirements specialist
team, and by having innovation and planning iterations.

Poller et al. [5], in their study of one organisation and
the effects of external security audit, found that security was
considered a quality aspect among other quality aspects, and
developers was expected to deal with such quality issues with-
out this responsibility being explicit and visible. Responsibility
for quality requirements is mentioned as a challenge in a
variety of studies [11], [12], [13]

Knauss et al. [14] point out the need to consider both Just
in Time and long term considerations for quality requirements.
They use safety and security requirements as examples to
illustrate that a longer perspective is needed to complement
the just in time considerations. This is needed since quality
requirements ”are typically related to architecture, and tend
to build on knowledge as much as on software structures,
although both need to come together.”

Approaches to handling quality requirements in software
development exist. One of the more prominent is the Architec-
ture Tradeoff Analysis Method (ATAM) [15], a comprehensive
method for evaluating software architectures relative to quality
goals. ATAM is performed by experts taking part in long
meetings (a lightweight evaluation meeting is estimated at four
to six hours) with the goal of discovering risks, non-risks,
sensitivities, and tradeoffs. One part of ATAM is the utility
tree, where each quality attribute (such as performance) has
a few associated attribute refinements (such as throughput).
For each of the attribute refinements, architecturally significant
requirements (ASRs) are identified. The ASRs are evaluated
by business value and architectural impact, often using values
like high, medium, or low.

When it comes to agile development, there are many
suggestions for how to address challenges related to quality
requirements [3], but these are generally less mature than e.g.
ATAM or are targeted towards only one quality dimension.
One example is Lemmetti et al. [16] that suggest a one
day workshop in the first iteration of the project to identify
quality requirements. Another example is ScrumScale [17],
which includes the concept of a scalability triage at iteration

TABLE I
QUALITY FACTORS TO RATE

Quality Factor Description

Security Asset values How valuable are the assets that this
functionality touches upon?

Exposure To what extent does this functionality
open up for attacks?

Scalability Workload Amount of work to be done in a given
period

Response time How fast must the result be available?

Safety Possibility The possible occurrence of the safety
critical situation (event)

Safety conse-
quence

Potential loss in terms of loss of lives,
expenses or damage to the environment

Availability Probability of
failure

Probability of functional failure given
component redundancy

Restoration
time

Time for the restoration of a failed sys-
tem (unplanned maintenance)

zero and if required, also for a sprint. Such an approach
has been found to reduce the amount of analysis required
[18], and is thus a motivation behind the work on quality
triage presented in this paper. A number of studies, both
theoretical [19] and empirical [20], [21], [22], point to the
importance of considering quality requirements early on in
an agile development project. However, others point to this
early capturing of quality requirements as a challenge, since
underlying assumptions may change [23]. The Protection
Poker [24] game is an example of a technique that evaluate
security risk at the beginning of each iteration.

Involvement of quality experts is commonly suggested, such
as establishing a quality requirements specialist team [10] or
including experts on the team (e.g. security champion [22] or
a usability expert [13]). Selection and utilization of experts to
support the development team has been included in elicitation
guidelines for non-functional requirements [25].

III. THE QUALITY TRIAGE METHOD

In the this section, we explain the concept of a quality triage
in more detail, how it can be performed in practice and how it
would fit into an agile development practice. Figure 1 gives an
overview of the quality triage method, exemplified by the four
quality dimensions scalability, security, safety and availability.
The quality triage method follows these high-level steps:

1) In an expert group meeting user stories/features are
evaluated from each quality’s point of view.

2) Identifying and evaluating where different qualities may
have an influence on each other, and help to decide on
solutions.

The initial evaluation of user stories/features in this figure is
represented by individual triages (scalability triage, security
triage, etc.). In for example the scalability triage, the user
stories/features are evaluated by experts on scalability with
the goal to identify the most critical user stories/features from
a scalability point of view to understand where additional

Availability
triage

Scalability
triage

Security
triage

Safety
triage

Input: Description of features

Output: Scoring of quality risks for each feature

Joint quality triages, only for relevant features

Output: Risky features

Fig. 1. Major steps, inputs and outputs in the quality triage method

measures may be needed. Additionally, the scalability experts
would be expected to come up with potential suggestions for
how to improve the identified issues. After all the individual
triages have been performed, the experts gather for a short
meeting (quality triage) where issues are flagged, potential so-
lutions proposed and any dependencies identified. The quality
triage will then point to areas where quality experts need to
work together to obtain solutions that will enable the project
to meet all their quality goals.

The quality triage method is light-weight and flexible and
can be adjusted to the needs of different types of organizations
and projects. Such a quick evaluation is needed in projects
where there are insufficient resources (time, money, expertise)
available to do a full analysis of the whole system related to
each quality dimension, and thus, a more targeted and time-
efficient evaluation is needed. In addition, it meets the needs to
explore and handle dependencies among quality dimensions.

In the ScrumScale method [17], a scalability triage was
envisioned to take place in sprint zero at the beginning of
each project or release, and if required, also for each iteration.
Similarly, we propose that the PO initiates quality triages when
planning new releases. Performing this activity for all sprints
will introduce too much overhead, but it should be done for all
iterations when new features are introduced or if old features
are drastically changed. Having quality triage when planning
for a new release makes it possible to take quality dimensions
into account for estimation and planning.

We propose that each quality dimension selects one to three
factors to aid in assigning importance level scores. In Table I,
we provide suggestions for the quality dimensions scalability,
security, safety, and availability. The suggestions for scalabil-
ity are the conventional concepts of workload and response
time (see ScrumScale [2] for a more elaborate description
of scalability requirements). The suggestions for security are
inspired by Protection Poker [24], [26], which replaced the
more traditional factors ‘consequence’ and ‘likelihood’ that
is used in security risk analysis, with ‘exposure’ and ‘value’,
to be better aligned to the feature as a unit of analysis as
opposed to a potential security incident. Consequence and
likelihood are again used as a basis for the safety factors by
selecting ‘possibility’ instead of ‘likelihood’ to convey a high-
level evaluation (not quantified). For availability we build on

the Reliability, Availability, Maintenance, and Safety (RAMS)
process [27] in which in-service availability can be increased
by optimizing reliability and maintainability. Redundancy and
restoration time are factors related to maintainability. Note,
redundancy is included in the description of probability of
failure to include the significance of redundancy for the
subsystem’s functional availability, e.g. in relation to a sensor
system. It is the reliability of the sensor system as a whole
that is considered in Table I, and not the sensors individually.

Based on experiences from applying ScrumScale [17], [18]
and Protection Poker [26], we suggest using a five point scale
for each factor: VL (very low), L (low), M (medium), H
(high) and VH (very high). Note that, similar to what is done
in Protection Poker, this scale needs to be calibrated to the
project at hand, which means that the quality experts doing
the analysis need to consider what is very high or very low
related to this project, and evaluate features/user stories related
to that consideration.

The scores assigned by the quality experts can be used in the
quality triage meeting to aid the discussions on dependencies
and can help flag user stories/features where quality issues are
prominent. Several things can happen:

• A user story/feature has no unacceptable risk for any
of the quality dimensions, and thus can be developed
without further analysis related to quality.

• A user story/feature has unacceptable risk for one quality
dimension, and the mitigation causes no problems for
other quality dimensions. The PO then makes the decision
on mitigation based on risk and other project factors.

• A user story/feature has unacceptable risk for one quality
dimension, and the mitigation creates more risks for
other quality dimensions. This points to a need for the
related quality experts to work together to find acceptable
solutions to be considered by the PO.

• A user story/feature has unacceptable risk for two or more
quality dimensions. This points to a need for the related
quality experts to work together to coordinate suggestions
for solutions, which are to be considered by the PO.

IV. SEMI-AUTONOMOUS CAR SCENARIO

This scenario primarily considers level 4 of semi-
autonomous driving, as defined in SAE J3016 [28]. An
autonomous car has several sensors, cameras and LIDARs
(light detection and ranging), radar, GPS (Global Positioning
System), and weather data. The software in an autonomous
car has billions of lines of code and thousands or millions of
features. We are interested in the situation where a new release
shall be produced. This release may have in the order of 10
to 100 new functions/features. In this case, it will simply be
too much work to analyse in detail all the quality implications
of all of these new features. The idea of this paper is to be
able to focus the attention on the critical features. This focus
does not mean that the other features are ignored, and they
may also later become critical features. Besides, it is vital to
discover how new features have quality implications for old
features.

A. Description of Features

In this paper, we consider the following three epics (EX)
with underlying features (FX.Y).

E1 - Improved collision sensor system: Combine infor-
mation from several sensors, cameras and LIDARs in the front
left and right of the car, to avoid collisions with, for example,
small dogs.

• F1.1 Collect information from different sources.
• F1.2 Prune information from different sources, because

we cannot deal with every entering snow flake or leaf
coming.

• F1.3 Make decision: Find out what to do and then
actually brake or turn. If the decision does not have the
intended effect, repeat all features in this epic.

E2 - More V2V communication: Receive direct informa-
tion about risky situations from the cars ahead using vehicle
to vehicle (V2V) communication:

• F2.1 Open up for communication with more neighbour-
ing cars (not only the car ahead).

• F2.2 Compare against other available information, such
as speed, rotating wheels, and temperature.

• F2.3 Make decision, similar to F1.3.
E3 - Improved accident warnings (V2X): React auto-

matically to more warnings about congestion, accidents or
changes in road condition from traffic control servers using
V2X, vehicle-to-everything communication. Messages are au-
thenticated via a public key infrastructure (PKI).

• F3.1 Receive messages from a central server.
• F3.2 Understand message, compare messages from dif-

ferent cars etc.
• F3.3 Make decision, similar to F1.3 and to F2.3.

B. Scoring of Quality Risks for each Feature

Table II shows the scoring of the different quality criteria
for the features. In the following section, we provide a brief
justification for these scores.

a) Scalability: With sensor fusion, the amount of sensor
data will increase in terms of processing, storage, and com-
munication. Especially feature F1.1, but also feature F1.2 and
F2.1, will only be feasible with breakthroughs in scalability.
As a result, feature F1.1 has very tough workload and response
time requirements, whereas the workload and response time
requirements in feature F1.2 and F2.1 are high, but less
rigorous. The features handling decisions, F1.3, F2.3 and F3.3
will be similar to existing decision features with a medium to
low amount of data and and a medium to low response time
requirement. Also, feature F2.2 will be manageable in terms
of scalability.

b) Security: Opening up for more vehicle-to-vehicle
(V2V) communication, as in E2, can highly increase the
exposure of the system. The message that is received from
a neighbouring vehicle may not be highly valuable in and
of itself, but the functionality related to receiving messages
may have a relationship to more valuable assets (such as
lack of input validation may open up for attackers being able

TABLE II
SCORING OF QUALITY RISKS FOR EACH FEATURE, FROM VERY LOW (VL), VIA LOW (L), MEDIUM (M) AND HIGH (H), TO VERY HIGH (VH)

User story Workload Resp. time Asset value Exposure Consequence Possibility Probability
of failure

Restoration
time

F1.1 VH VH M L VL M VL VL
F1.2 H H H VL M H VL VL
F1.3 M M VH VL H L H H

F2.1 H H H VH H M M H
F2.2 M M M VL M H M H
F2.3 M M H VL M H M H

F3.1 M M H L M M H L
F3.2 L M L VL M H H L
F3.3 L M H VL L H H VL

to run code), thus a high score is given. As a result, F2.1
is considered important to consider further from a security
perspective. There are similar concerns related to F3.1, but
as a PKI is in place for authentication of messages from
central servers the risk is drastically reduced. The assets
related to making decisions (especially F1.3, F3.2 and F3.3)
are considered highly valuable, but these concern well-placed
internal processes that are believed to be difficult for an
attacker to reach. We assume that we can trust the sensors
and the internal communication in the car.

c) Safety: Though errors in single sensor readings are
to be expected, these errors will likely not lead to safety
consequences due to availability of a large amount of sensor
readings. The consequence is therefore scored very low to
medium for feature F1.1 to F1.2. Decisions based on such
sensor data are regarded as safety critical functions, and safety
requirements apply [29]. Therefore, a high safety consequence
but low possibility of errors for F1.3 is assumed. Communica-
tion between cars is vulnerable and safety critical; therefore,
F2.1 to F2.3 have been given medium to high consequence
and possibility of errors. Early accident warning from a traffic
control center are less safety critical because more time is
available before situations become safety critical. Therefore,
there will be less consequences. The same possibility scores
as for E2 are given to F3.1 to F3.3.

d) Availability: In feature F1.1 and F1.2, minor effects
on availability from single sensor failures are assumed as a
high amount of total sensor readings are expected. Most of
the signal failures from sensors will likely be caused by bad
weather conditions, like heavy snow or rain. Thus, only minor
efforts to regain function are expected. Possible errors in the
decision software are assumed to require service, i.e. spending
time out of service for the car and thus a high restoration
time in feature F1.3. The same argument for restoration time
applies to failure in communication software with cars further
ahead in feature F2.1 to F2.3. However, here we assume a
more reliable system than for F1.3, i.e. medium probability
of failure scores of F2.1 to F2.3. For communication with
the traffic control center, possible errors will generally cause
delays for the autonomous vehicles, i.e. high probability of
failure score for F3.1 to F3.3. The restoration time for F3.1

to F3.3 are however, assumed to be low because the failures
most likely are external to the vehicles.

C. Joint Quality Triage, only for Relevant Features

With the scoring of Table II as input, the quality triage meet-
ing identified features where further coordination is needed:

• Availability and safety: Several features (F1.3, F2.2 and
F2.3) scores high on both availability and safety. Ad-
ditionally, the quality triage identified a potential trade-
off between safety and availability in this system, as
incorporating safety requirements like in ISO 26262 [29]
may result in the need to shut down the sensor system
early when facing challenging situations, such as bad
weather with snow or heavy rainfall.

• Scalability and security: Feature F2.1 scores high on
both scalability and security. As security mitigations
often cause scalability risks, further coordination between
scalability and security experts is necessary.

Thus, additional meetings are set up to coordinate these as-
pects. In addition, the features F1.1 and F1.2 present scalability
challenges, but they seem to be manageable for the other
qualities. The scalability mitigation required for feature F1.1
and F1.2 is not likely to give any effects on the other risks.

As a result of this quality triage meeting, the product owner
knows for which features additions are needed in the backlog,
and which experts are responsible for suggesting solutions.
Just as important, the product owner can proceed with the
features where no quality additions are needed.

When the quality experts at a later stage recommend miti-
gations for the quality issues identified, the scoring in Table
II can be used to identify quality experts that may need
to be consulted to check that the mitigations do not cause
further problems. In this case, one example is the mitigations
that end up being suggested by the safety and availability
experts concerning feature F1.3. For this feature, this quality
triage identified the coordination need but did not provide any
suggestion for mitigation that fulfilled the needs. When the
experts later suggest a solution, this solution may need to be
checked by availability and security experts to ensure it does
not cause problems, as these qualities have moderate scores
for this feature.

V. DISCUSSION

In the introduction, we explained our goal of a manageable
method to handle quality requirements for agile projects; to
move from quality requirements being largely implicit to a
practise of understanding and managing quality requirements
in relation to each other. Our method is a compromise between
the two extremes of on the one side fix-it-later [6] and on
the other side a rigorous approach like a full model-based
approach or something like ATAM [15]. In the following we
discuss our relation to ATAM before moving on to discussing
the costs and benefits that we see of the quality triage method.
Finally, we point to critical success factors for projects wanting
to adopt this method.

A. Relation to ATAM

We mentioned ATAM in Section II. The quality triage
approach suggested in this paper is inspired by ATAM [15],
and in particular the utility tree. The utility three utilizes
factors to refine the quality dimensions, thus making it more
manageable. Additionaly, the goal of the quality triage meet-
ing(s) is similar to that of ATAM; identifying risk, non-risk
and needs for further coordination. Building on the ideas of a
well-recognized method such as ATAM is a strength of our
approach. However, our approach is different from ATAM
in several ways. Most importantly, it is a more lightweight
approach than ATAM and more in line with the agile way of
working. Our method takes as input the user stories or features
already in the backlog, and not an architecture. Furthermore,
the goal of the quality triage is to score the quality risks of user
stories or features, not to identify all architecturally significant
requirements when it comes to quality.

This has implications for the complexity of the method.
Several qualities can be affected by the same features, whereas
the architectural significant requirements (ASRs) in ATAM are
unique for each quality. In the quality triage method, we do
not have to deal with business value, since this is taken care
of by the selected features (often with the highest business
value). Most importantly, we are not analyzing architectural
approaches, which in the lightweight version of the ATAM
consumes the bulk of the time. Of course, the result of our
quality triage approach is not a full walk through of the
whole architecture. But this is not the point. The key value
of the quality triage method is to direct the attention of
the development team and the quality experts towards the
most critical user stories or features using a continuous and
lightweight approach.

B. Cost

The quality triage method comes with some costs, mainly
involving the work needed to perform quality triages. Quality
experts need to spend time to evaluate user stories/features
from the point of view of their quality dimension, and discuss
quality concerns with other quality experts. This is a chal-
lenging task, and the cost of these quality triages will depend
on the experts’ abilities to be brief in their evaluations and
discussions. We expect that the costs of the quality triages

will drop as experts become more familiar with this way
of working. Note, however, that although there is a cost of
estimating risk for all the features, this is a task that strictly
speaking is required anyway (although it may be neglected in
many projects). The quality triage method is a way to make
this task more cost-effective in that the overall evaluation is
done quickly, to provide more ability to focus on the key areas.
There is potential to make this process even more efficient in
some cases; if a whole epic seems simple for many qualities,
there may be no need to do a detailed scoring.

The number of experts involved may vary depending on
the projects, and this will also impact the costs. Note however
that in reality there may well be overlap in the experts on
the different qualities, such as the same person being both the
scalability and the security expert.

C. Benefit

Through a scenario on semi-autonomous cars, we have
demonstrated the potential usefulness of this method to quickly
identify where to put effort on quality and where the different
quality dimensions need to coordinate their effort. A study
of a similar method has shown a reduced need for analysis;
being able to restrict scalability analysis to high-risk features
effectively reduced the analysis need from ten to three fea-
tures [18]. In practice, this large reduction made the analysis
manageable. Since risks are identified earlier, mitigation can
also happen while the cost of fixing is low. The amount of
testing may be relaxed for features with a low risk. To do an
explicit analysis of quality risks will increase the quality of
the solution. Thus, the need for costly and time-consuming
fixing after introducing the solution to the public is avoided.

The quality triage approach introduces a common way to
manage qualities, independent of which quality dimensions are
most prominent. This makes the process more manageable and
less costly for the product owner, as it does not require the
product owner to relate to a myriad of quality approaches and
ad-hoc and unstructured quality expert interactions. Especially
for complex projects, these benefits should be important.

D. Success factors for adoption

We argue that the quality triage is a light-weight method
in line with the the agile manifesto [1] (Individuals and
interactions over processes and tools; working software over
comprehensive documentation; customer collaboration over
contract negotiation; and responding to change over following
a plan). Still, it is an add-on to current agile development
methodologies, and this poses challenges on how to integrate
it with current practice.

One main challenge that we see is that of ensuring that
quality triages become a regular activity in the project. We
have in this paper suggested that the PO should be responsible
for the quality triage process, and thus, be the one to initiate a
new round of quality triages and follow up the result. This is
because the PO is in a position to know when during a project
timeline that quality triages will be most useful and to integrate
the results into the project. However, previous research has

shown that the PO in some cases acts as an obstacle for quality
[9]. This could be because of a lack of competence or interest,
or simply because of too many responsibilities. As an add-on
to the agile process, the quality triage is dependent on someone
“championing” it, at least in the early phases of adoption, to
ensure it becomes a part of practice. If in a given organization
and project this is not likely to be a role taken by the PO,
then it is essential that someone else is given responsibility
for following up both the initiation of quality triages and the
integration of results into development.

VI. CONCLUSION AND FURTHER WORK

We have described a light-weight and integrated method
for identifying risk features with respect to four quality re-
quirements: scalability, security, safety and availability. The
recommendations made in this paper are based on the au-
thors’ experiences with working with companies on scalability,
security and safety in agile development. More studies are
needed to further improve this promising quality assessment
method and gain knowledge on effects and factors important
for adoption.

ACKNOWLEDGMENT

This work was supported by the SINTEF strategic project
Multilities: Agile Mastering of Security, Safety, Scalability
and Availability Requirements, and by two projects funded by
Research Council of Norway: SoS-Agile: Science of Security
in Agile Software Development (grant # 247678) and SMED:
Smarter Innovation with Digital Transformation of Innovative
Procurement (grant # 285542).

REFERENCES

[1] K. Beck, Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[2] G. Brataas and T. E. Fægri, “Agile Scalability Requirements,” in
International Conference on Performance Engineering. ACM, 2017.

[3] W. Behutiye, P. Karhapää, L. Lopez, X. Burgués, S. Martı́nez-Fernández,
A. M. Vollmer, P. Rodrı́guez, X. Franch, and M. Oivo, “Management
of quality requirements in agile and rapid software development: a
systematic mapping study,” Information and Software Technology, p.
106225, 2019.

[4] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements engineering
practices and challenges: an empirical study,” Information Systems
Journal, vol. 20, no. 5, pp. 449–480, 2010.

[5] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda,
“Can security become a routine? a study of organizational change in
an agile software development group,” in Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social
Computing, 2017, pp. 2489–2503.

[6] C. U. Smith and L. G. Williams, Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley,
2001.

[7] L. Cao and B. Ramesh, “Agile requirements engineering practices: An
empirical study,” IEEE software, vol. 25, no. 1, pp. 60–67, 2008.

[8] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A
systematic literature review on agile requirements engineering practices
and challenges,” Computers in human behavior, vol. 51, pp. 915–929,
2015.

[9] W. Alsaqaf, M. Daneva, and R. Wieringa, “Quality requirements in
large-scale distributed agile projects–a systematic literature review,”
in International Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, 2017, pp. 219–234.

[10] ——, “Quality requirements challenges in the context of large-scale dis-
tributed agile: An empirical study,” Information and software technology,
2019.

[11] I. A. Tøndel, M. G. Jaatun, D. S. Cruzes, and N. B. Moe, “Risk cen-
tric activities in secure software development in public organisations,”
International Journal of Secure Software Engineering (IJSSE), vol. 8,
no. 4, pp. 1–30, 2017.

[12] E. Terpstra, M. Daneva, and C. Wang, “Agile practitioners’ understand-
ing of security requirements: Insights from a grounded theory analysis,”
in 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW). IEEE, 2017, pp. 439–442.

[13] Å. Cajander, M. Larusdottir, and J. Gulliksen, “Existing but not explicit-
the user perspective in scrum projects in practice,” in IFIP Conference
on Human-Computer Interaction. Springer, 2013, pp. 762–779.

[14] E. Knauss, G. Liebel, K. Schneider, J. Horkoff, and R. Kasauli, “Quality
requirements in agile as a knowledge management problem: More than
just-in-time,” in 2017 IEEE 25th International Requirements Engineer-
ing Conference Workshops (REW). IEEE, 2017, pp. 427–430.

[15] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley, 2012.

[16] J. Lemmetti, M. Raatikainen, V. Myllärniemi, and T. Männistö, “Com-
parison of software architecture design and extreme programming,” in
Work-in-Progress Session in IFIP Central and East European Confer-
ence on Software Engineering Techniques (CEE-SET), vol. 30, 2007,
p. 44.

[17] G. Brataas, G. Hanssen, N. Herbst, and A. van Hoorn, “Agile Scalability
Engineering: The ScrumScale Method,” IEEE Software, September
2020.

[18] G. K. Hanssen, G. Brataas, and A. Martini, “Identifying Scalability Debt
in Open Systems,” in Int. Conf. on Technical Debt. IEEE, 2019.

[19] R. Goetz et al., “How agile processes can help in time-constrained
requirements engineering,” in Proceedings of the international workshop
on time constrained requirements engineering. Citeseer, 2002.

[20] V. Sachdeva and L. Chung, “Handling non-functional requirements for
big data and iot projects in scrum,” in 2017 7th International Conference
on Cloud Computing, Data Science & Engineering-Confluence. IEEE,
2017, pp. 216–221.

[21] M. Lindvall, V. Basili, B. Boehm, P. Costa, K. Dangle, F. Shull,
R. Tesoriero, L. Williams, and M. Zelkowitz, “Empirical findings in agile
methods,” in Conference on extreme programming and agile methods.
Springer, 2002, pp. 197–207.

[22] A. Alnatheer, A. M. Gravell, D. Argles, and L. Gilbert, “Agile security
methods: an empirical investigation,” in Proceedings of the IASTED
International Conference, Software Engineering. DOI, vol. 10, 2013,
pp. 2014–810.

[23] T. N. Graham, R. Kazman, and C. Walmsley, “Agility and experimenta-
tion: Practical techniques for resolving architectural tradeoffs,” in 29th
International Conference on Software Engineering (ICSE’07). IEEE,
2007, pp. 519–528.

[24] L. Williams, A. Meneely, and G. Shipley, “Protection poker: The new
software security game,” IEEE Security and Privacy, vol. 8, no. 3, pp.
14–20, 2010.

[25] M. Younas, D. Jawawi, I. Ghani, and R. Kazmi, “Non-functional re-
quirements elicitation guideline for agile methods,” Journal of Telecom-
munication, Electronic and Computer Engineering (JTEC), vol. 9, no.
3-4, pp. 137–142, 2017.

[26] I. A. Tøndel, M. G. Jaatun, D. S. Cruzes, and L. Williams, “Collaborative
security risk estimation in agile software development,” Information &
Computer Security, 2019.

[27] EN50126-1:2017, “The Specification and Demonstration of Reliability,
Availability, Maintainability and Safety (RAMS) - Part 1: Generic
RAMS process,” 2017.

[28] SAE, “Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles,” 2018.

[29] ISO26262, “Road Vehicles – Functional Safety,” 2011.

