
Exploring Security in
Software Architecture and
Design

Michael Felderer
University of Innsbruck, Austria

Riccardo Scandariato
Chalmers University of Technology, Sweden & University of
Gothenburg, Sweden

A volume in the Advances in
Information Security, Privacy, and
Ethics (AISPE) Book Series

Published in the United States of America by
IGI Global
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2019 by IGI Global. All rights reserved. No part of this publication may be
reproduced, stored or distributed in any form or by any means, electronic or mechanical, including
photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI Global of the
trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material.
The views expressed in this book are those of the authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Names: Felderer, Michael, editor. | Scandariato, Riccardo, editor.
Title: Exploring security in software architecture and design / Michael
 Felderer and Riccardo Scandariato, editor.
Description: Hershey, PA : Information Science Reference, [2018] | Includes
 bibliographical references.
Identifiers: LCCN 2018008109| ISBN 9781522563136 (h/c) | ISBN 9781522563143
 (eISBN)
Subjects: LCSH: Computer security. | Software architecture--Security
 measures. | Software engineering--Security measures.
Classification: LCC QA76.9.A25 E996 2018 | DDC 005.8--dc23 LC record available at https://lccn.
loc.gov/2018008109

This book is published in the IGI Global book series Advances in Information Security, Privacy,
and Ethics (AISPE) (ISSN: 1948-9730; eISSN: 1948-9749)

260

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

DOI: 10.4018/978-1-5225-6313-6.ch011

ABSTRACT

Software security does not emerge fully formed by divine intervention in deserving
software development organizations; it requires that developers have the required
theoretical background and practical skills to enable them to write secure software,
and that the software security activities are actually performed, not just documented
procedures that sit gathering dust on a shelf. In this chapter, the authors present
a survey instrument that can be used to investigate software security usage,
competence, and training needs in agile organizations. They present results of using
this instrument in two organizations. They find that regardless of cost or benefit,
skill drives the kind of activities that are performed, and secure design may be the
most important training need.

Measuring Developers’
Software Security Skills,

Usage, and Training Needs
Tosin Daniel Oyetoyan

Western Norway University of Applied Sciences, Norway

Martin Gilje Jaatun
SINTEF Digital, Norway

Daniela Soares Cruzes
SINTEF Digital, Norway

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 261

Measuring Developers’ Software Security Skills, Usage, and Training Needs

INTRODUCTION

Traditional security engineering processes are often associated with additional
development efforts and are likely to be unpopular among agile development teams
(ben Othmane et al., 2014; Beznosov & Kruchten, 2004). A software security
approach tailored to the agile mind-set thus seems necessary.

Some approaches have been proposed to integrate security activities into agile
development, e.g., the Microsoft SDL for Agile (Microsoft, 2012). However, these
approaches have been criticised for looking too similar to the traditional versions
in terms of workload (e.g., performing a long list of security verification and
validation tasks) (ben Othmane et al., 2014). As a result, “agile” organizations have
approached software security in a way that better fits their process and practices.
Thus, regardless of whether agile is perceived to be incompatible with any particular
secure software development lifecycle, the major discussion we should have is how to
improve security within the agile context (Bartsch, 2011). Previous studies (Ayalew
et al., 2013; Baca & Carlsson, 2011) have investigated which security activities are
practiced in different organizations, and which are compatible with agile practices
from cost and benefit perspectives. Using a survey of software security activities
among software practitioners, they identify and recommend certain security activities
that are compatible with agile practices.

While these activities could be argued to be beneficial and cost effective to
integrate, there are still gaps between what is “adequate” security (Allen, 2005),
and what is currently practiced within several organizations. According to Allen
(2005), adequate security is defined as “The condition where the protection and
sustainability strategies for an organization’s critical assets and business processes
are commensurate with the organization’s tolerance for risk”.

BACKGROUND

Software security has existed as a distinct field of research for over a decade, and
reached prominence with the publication of the book “Software Security” (Gary
McGraw, 2006).

The studies by Ayalew et al. (2013), Baca and Carlsson (2011), and Morrison
et al. (2017) have investigated security activities from cost and benefit dimensions
to advise on frameworks and selection of security activities that can be integrated
to agile software development. Jaatun et al. (2015) have used BSIMM to measure
security practices but with focus on security maturity at an organisational level. Other
studies not directly related to our work have looked into market skills relevant for
cybersecurity jobs. For example, Potter and Vickers (2015) used a questionnaire to

262

Measuring Developers’ Software Security Skills, Usage, and Training Needs

answer and address the question of what skills does a security professional need in
the current information technology environment, and they explored this question by
looking at the current state of the Australian industry. Fontenele (Fontenele, 2017)
developed a conceptual model and an ontological methodology to aid a robust
discovery of the fittest expertise driven by the specific needs of cyber security
projects, as well as benchmarking expertise shortages.

Our work differs from these studies as we have measured developers’ skills and
training needs along software security activities.

Secure Software Development Lifecycles

A number of Secure Software Development Lifecycles (SSDLs) have been proposed,
in the following we briefly introduce to most important ones as they relate to this
paper.

OWASP CLASP

The Comprehensive, Lightweight Application Security Process (CLASP) (OWASP,
2006) was a project under the Open Web Application Security Project (OWASP).
A high-level overview of CLASP is given in Figure 1. CLASP was based on seven
best practices:

1. Institute awareness programs
2. Perform application assessments
3. Capture security requirements
4. Implement secure development practices
5. Build vulnerability remediation procedures
6. Define and monitor metrics
7. Publish operational security guidelines

CLASP has not been updated since 2006, and is currently considered abandoned.
However, some of the CLASP activities can still be considered useful by themselves.

Microsoft SDL for Agile

The Microsoft Security Development Lifecycle for Agile Development (SDL-Agile)
(Microsoft, 2012) is the agile version of the traditional Microsoft SDL (Howard &
Lipner, 2006). SDL-Agile is split into three types of activities (see Table 1);

263

Measuring Developers’ Software Security Skills, Usage, and Training Needs

• “Every-Sprint Requirements” (S): These activities should be performed in
every iteration

• “Bucket Requirements” (B): These activities must be performed on a
regular basis during the development lifecycle; there are three types of such
requirements defined (each type referred to as a bucket) and typically one is
picked from each bucket in each sprint

• “One-Time Requirements” (O): These activities typically only need to be
performed once at the beginning of the project.

Cigital Touchpoints

The Cigital Touchpoints (Gary McGraw, 2004; Gary McGraw, 2005) (de Win et
al., 2009) were introduced as a lightweight way of distilling the essence of practical
software security. They have been presented slightly different over the years, but
the essence is as illustrated in Figure 3.

Figure 1. CLASP Overview

264

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Figure 2. The SDL-agile one-time and bucket requirements illustrated

Table 1. MS SDL-agile activities – (o)ne-time, (s)print, and (b)ucket

1.
Training

2.
Requirement 3. Design 4.

Implementation
5.

Verification
6.

Release
7.

Response

1. Core
Security
Training

2. Establish
Security
Requirements
(O)

5. Establish Design
Requirements (O)

8. Use Approved
Tools (S)

11. Perform
Dynamic
Analysis (B)

14.
Create an
Incident
Response
Plan (O)

17.
Execute
Incident
Response
Plan

3. Create
Quality Bug
Bars (B)

6. Perform Attack
Surface Analysis/
Reduction (O)

9. Deprecate
Unsafe
Functions (S)

12. Perform
Fuzz Testing
(B)

15.
Conduct
Final
Security
Review
(S)

4. Perform
Security and
Privacy Risk
Assessments
(O)

7. Use Threat
Modeling (S)

10. Perform
Static Analysis
(S)

13. Conduct
Attack
Surface
Review (B)

16.
Certify
Release
and
Archive
(S)

265

Measuring Developers’ Software Security Skills, Usage, and Training Needs

In order of effectiveness, the 7 touchpoints are:

1. Code review
2. Architectural risk analysis
3. Penetration testing
4. Risk-based security tests
5. Abuse cases
6. Security requirements
7. Security operations

ISO/IEC Application Security Standard

In 2011, the International Standards Organization published an application security
standard as part of its 27000-series (ISO/IEC, 2011). We have not seen this standard
in use in any of the organizations we have worked with, but it may prove relevant
in the future.

Measuring Software Security Activities

Measuring software security is difficult (Jaatun, 2012), and therefore second-order
metrics are often employed, i.e., measuring what kind of software security activities
are performed when developing the software.

OpenSAMM

The OWASP Software Assurance Maturity Model (SAMM or OpenSAMM) (OWASP,
2016) is an open software security framework divided into four business functions:
Governance, Construction, Verification and Deployment. Each business function
is composed of three security practices, as shown in Table 2.

Figure 3. The cigital touchpoints

266

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Each practice is assessed at a maturity level from 1 to 3 (plus 0 for “no maturity”),
and for each maturity level there is an objective and two activities that have to be
fulfilled to achieve that level. OpenSAMM is “prescriptive”, in the sense that it
advocates that all the specified activities must be performed in order to be a high-
maturity organisation.

BSIMM

The Building Security In Maturity Model (BSIMM) first saw the light of day in 2009,
based on a study of 9 software development organizations. BSIMM is structured
around a Software Security Framework of four domains, each divided into three
practices, as illustrated in Table 3. As is evident from the table, BSIMM shares
origins with the OpenSAMM framework described above. The latest version of the
BSIMM report (Gary McGraw et al., 2018) features results from 120 companies,
measuring 116 different software security activities.

Although BSIMM also ranks software security activities in three maturity
levels, it purports to be descriptive rather than prescriptive, and there is no implicit
expectation that all organizations should do all 116 activities. Due to the large
number of software security activities, BSIMM can said to be more specific than
OpenSAMM. New BSIMM activities are added as they are observed in the field,

Table 2. The OpenSAMM software security framework

Governance Construction Verification Deployment

Strategy and Metrics Threat Assessment Design Review Vulnerability
Management

Policy & Compliance Security Requirements Code Review Environment Hardening

Education & Guidance Secure Architecture Security Testing Operational
Enablement

Table 3. The BSIMM software security framework

Governance Intelligence SSDL Touchpoints Deployment

Strategy and Metrics Attack Models Architecture Analysis Penetration Testing

Compliance and Policy Security Features and
Design Code Review Software Environment

Training Standards and
Requirements Security Testing

Configuration
Management and
Vulnerability
Management)

267

Measuring Developers’ Software Security Skills, Usage, and Training Needs

and activities that fall out of use are removed. The maturity level of a given activity
can also be changed from one version of the study to the next.

BSIMM has also been used to measure security practices in different organizations.
Jaatun et al. (2015) used a questionnaire based on the BSIMM activities to measure
the security maturity of Norwegian public organizations. They found that there is
a need for improvements in metrics, penetration testing and training developers in
secure development. BSIMM is useful for measuring the software security maturity
of an organization and helping them formulate overall security strategy (Gary
McGraw et al., 2018). However, it is not perceived as a lightweight measurement
tool to directly measure developers’ skill or usage of software security activities
within a development team.

Common Criteria

The Common Criteria (ISO/IEC, 2009) (CC) emerged toward the end of the
previous century as an amalgamation of the US DoD Trusted Computer Systems
Evaluation Criteria (TCSEC, a.k.a. “the Orange Book”), the European ITSEC and
the Canadian CTCPEC. CC is used in the security evaluation of computer-based
systems, typically for military or critical infrastructure use. A fundamental concept
of CC is that a Protection Profile containing functional security requirements and
security assurance requirements is established. A security assurance requirement is
intended to help achieve a certain level of confidence that the claimed (functional)
security requirements are fulfilled, and typically relate to how the system is developed.
There are sets of predefined security assurance requirements which are referred to
as Evaluation Assurance Levels (EAL1-7). The manufacturer will create a Security
Target document which elaborates how the requirements of the Protection Profile
are met, and finally an external evaluator will perform an evaluation to confirm or
reject the claims.

CC is essentially a long list of requirements, and it is totally up to the Protection
Profile which requirements are considered for a given product. Some of the assurance
requirements are effectively software security activities.

The Top 10 Software Security Design Flaws

The IEEE Center for Secure Design has published a document (Arce et al., 2014)
explaining how to avoid the ten most common software security design flaws. The
recommendations are as follows:

1. Earn or Give, but Never Assume, Trust
2. Use an Authentication Mechanism that Cannot be Bypassed or Tampered With

268

Measuring Developers’ Software Security Skills, Usage, and Training Needs

3. Authorize after You Authenticate
4. Strictly Separate Data and Control Instructions, and Never Process Control

Instructions Received from Untrusted Sources
5. Define an Approach that Ensures all Data are Explicitly Validated
6. Use Cryptography Correctly
7. Identify Sensitive Data and How They Should Be Handled
8. Always Consider the Users
9. Understand How Integrating External Components Changes Your Attack

Surface
10. Be Flexible When Considering Future Changes to Objects and Actors

RESEARCH METHODOLOGY AND STUDY DESIGN

The research presented here is motivated based on the perceived knowledge gaps in
software security in agile software development organizations in Norway (Jaatun et al.,
2015). In order to address these gaps, management must first understand the current
status of software security practices and capability within their organization. We
used our survey instrument in a study carried out in 2 organizations (in the following
referred to as “Org-1” and “Org-2”), that develop software in telecommunication
and transportation, respectively. The case study is described in more detail in our
previous work (Oyetoyan et al., 2016; Oyetoyan et al., 2017) investigating existing
practice, skills, and training needs within agile teams. The survey instrument is
intended to shed light on the training needs and understand the relationships between
skills and usage of security activities among teams and across roles. The findings
are important to guide management decisions towards improving security within
their organization.

The sections below describe the research questions, hypotheses, data collection
procedure that we used in our case studies, the instruments used, and the type of
data analysis performed.

Research Questions

We make the following assumptions that:

• Developers have relatively different skills in software security, regardless of
the organization where they currently work.

• Agile organizations have different usage patterns with software security
activities. An agile team is mostly autonomous and self-confident (Robinson
& Sharp, 2004), and thus makes decisions that the team members think best

269

Measuring Developers’ Software Security Skills, Usage, and Training Needs

contribute to customer satisfaction and product quality. Since activities are
chosen in a voluntary manner in agile settings, we believe that organizations
would use activities that best fit their process and business needs.

• Based on conventional wisdom, using an activity requires certain level of
know-how. Hence, teams would use activities where they have competence.

• Experienced developers would most probably have taken security related
decisions during their development career, and thus have knowledge and
experience in software security.

Our instrument is suitable for investigating whether the skills, usage and training
needs in software security activities in several organizations are similar or different.
Understanding the similarities and differences between organizations also help
during replications and adoptions of software security activities and programs across
different organizations.

The research questions that could be addressed include:

• Which software security activities are most used within the organization?
• Which training needs are important to the organization?
• How are security experience and the perceived need for software security

training influenced by years of developer of experience?
• What is the relationship between usage of, and skill in software security

activities?

Data Collection

The method of choice for the project is Action Research (Greenwood & Levin, 2006).
Action research is an appropriate research methodology for this investigation for
several reasons. First, the study’s combination of scientific and practical objectives
is a good match with the basic tenet of action research, which is to merge theory
and practice in a way that real-world problems are solved by theoretically informed
actions in collaboration between researchers and practitioners (Greenwood & Levin,
2006). Therefore, the design of the instruments had to take in consideration the
usefulness of the results for the companies and for research.

In addition, for the interpretation and discussion of the results, answers from the
survey should be complemented by document analysis of project artifacts, observations
of meetings, and discussions with different stakeholders in the companies. Other
focused interviews on specific topics, and the feedback from the survey results,
should be compared with the collected information about the organizational contexts
and documents.

270

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Survey Questionnaire

The questionnaire was designed in phases, getting feedback from the companies
and experts for getting to the final version. The first version of the questionnaire
contained questions on different software security activities from OWASP CLASP,
Microsoft SDL for Agile, Common Criteria, and Cigital Touchpoints that have
been used in previous studies (Ayalew et al., 2013; Baca & Carlsson, 2011). The
table also includes additional practices such as “pair programming” and “drawing
a countermeasure graph” considered in these studies; both are common security
activities used in agile settings, e.g., when security experts rotate through programming
pairs (Bartsch, 2011; Wäyrynen et al., 2004).

The instrument has been jointly reviewed by the authors, a security professional,
a security champion and a project manager. The activities are classified differently
than in the traditional software development lifecycle (SDLC), but they do, however,
fit into each development lifecycle. The rationale is to invoke a different way of
perceiving these activities than from a traditional viewpoint. This could make it
possible to spot some assumptions such as for instance, whereas secure design
involves many activities from “Threat modelling and risk management”, we can
argue that software designers could make assumptions about secure design when they
include, e.g., authentication mechanisms (Arce et al., 2014). However, performing
a comprehensive threat analysis could reveal an insecure design, e.g., a possibility
to bypass an authentication or authorization mechanism by directly navigating to
an obscure webpage or resource.

Similarly, we have considered software security tools separately in order to
identify strong and weak areas of usage and skills. Findings from the survey can
trigger further questions, e.g., why certain implemented tools are not used within
the organization, and this could lead to useful actions. These activities are divided
into: Inception, threat modelling and risk management, secure design and coding,
security tools, security testing, and release. Table 5 shows the software security
activities. In addition, we provided a short explanation of each term we have used
in the survey for the respondents. We have used a scale for the skill level as shown
in Table 4; the respondents were instructed to use this scale when assessing their
own skill level.

For the software activities listed in Table 5, we asked the following 3 questions:

Q1: What is your skill level in this activity or tool?
Q2: Do you currently use this activity or tool? (Check box for yes)
Q3: Do you want to have training in this activity or tool? (Check box for yes)

271

Measuring Developers’ Software Security Skills, Usage, and Training Needs

In addition, we asked 2 questions about security and development experience:

Q4: Do you have security experience? (Yes or no)
Q5: Number of years with software development.

We have designed both an online questionnaire and a paper-based version.
We further refined the instrument by running a test on our industrial contacts, an
independent architect and a post-doctoral fellow in software engineering. The target
response time was 10-12 minutes. In our experience, administering the questionnaire
manually to the development teams on site will increase the response rate, and
provide the opportunity to clarify questions that respondents might have.

The final questionnaire can be found in the original paper (Oyetoyan et al., 2017),
and is also provided in Appendix A in this chapter. The skills are listed in Table 5,
and additional explanations are further provided in Appendix A.

Comparing with the software security activities defined in BSIMM (Gary McGraw
et al., 2018), we find that most of the activities in Table 5 are fully or partly covered
by BSIMM, except “Countermeasure techniques”, “Pair programming”, and “Use
of threat modelling tool”. Threat modelling is equivalent to what BSIMM calls
“Architecture Analysis”, but this practice does not mention using a tool.

RESULTS

We used our survey instrument on two local companies (Oyetoyan et al., 2017), and
in the following we briefly present some results of the survey and analysis conducted
among the two organizations, discussing each research question in turn.

Table 4. Scale for skill level

Novice [1] Basic [2] Moderate [3] High [4] Expert [5]

Have no
experience
working in this
area

You have the level
of experience
gained in a
classroom and/
or experimental
scenarios or as a
trainee on-the-job.
You are expected
to need help when
performing in this
area

You are able
to successfully
complete tasks
in this area as
requested. Help
from an expert may
be required from
time to time, but
you can usually
perform the skill
independently

You can perform the
actions associated
in this area without
assistance. You
are certainly
recognized within
your immediate
organization as “a
person to ask” when
difficult questions
arise regarding this
area

You are known
as an expert in
this area. You can
provide guidance,
troubleshoot and
answer questions
related to this area
of expertise and
the field where the
skill is used

272

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Table 5. Mapping of software security activities

CLASP MS-SDL CT CC Others BSIMM Activities

Inception

Functioning as project security
officer/champion * *

SM1.2, SM2.3,
T2.5, T2.7, T3.1,
T3.5

Gathering security requirements * * * *
Partly covered by
SR1.3 (Maybe
whole practice SR)

Writing abuse stories/cases * * AM2.1, ST3.5

Threat Modeling and Risk Management

Threat modeling * * Practice AM

Attack surface analysis * * Partly covered by
Practice AM

Countermeasure techniques * * -

Asset analysis * Partly covered by
AM1.2, CP2.1

Risk analysis * * * AA2.1

Role matrix identification * SM1.1

Secure Design and Coding

Secure design * * * SFD1.2, SFD2.1,
SFD2.2, SFD3.3

Secure coding * * * SR2.6, CR3.5

Pair programming * -

Static code analysis * * * Practice CR

Use of Security Tools

Use of threat modeling tool * -

Use of dynamic code analysis tool * Partly covered by
practice PT

Use of static code analysis tool * Partly covered by
CR1.4

Use of code review tool * CR1.4, CR2.5,
CR2.6, CR3.4

Security Testing

Vulnerability assessment Partly covered by
practice AM

Penetration testing * Practice PT

Red team testing PT1.1, PT1.3,
PT3.1

Fuzz testing * ST2.6

Dynamic testing * Partly covered by
Practice CR and ST

Risk-based testing * Practice ST

Security code review * * Practice CR

Release

Incident response management * *
CMVM1.1,
CMVM2.1,
CMVM3.3

273

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Which Activities Are Most Used Within the Organizations?

Research performed by Microsoft (Adams, 2012) indicates that only 36% of developers
are confident to write secure software. Our small sample indicates that this situation
still persists. Our results show that the three most commonly used activities were:

• Use of code review tool
• Static code analysis
• Pair programming.

Note that none of these are necessarily pure software security activities, and may
indeed be used without improving software security at all.

Which Training Needs Are Important to the Organizations?

In our study, secure design was indicated as the single most important training need
expressed by teams in both organizations. There is thus a need to focus on how to
address and assist agile teams in the area of secure design. Architectural-related
challenges such as lack of time, motivation to consider design choices, and unknown
domain and untried solutions have been shown to affect agile development teams
(Babar, 2009).

How Are Security Experience and the Perceived
Need for Software Security Training Influenced
by Years of Developer Experience?

We can infer that training needs may or may not be influenced by years of development
experience. Factors such as an organization’s working culture, teams’ distribution,
teams’ interactions, security experience, and how new employees are integrated could
be responsible for training needs perceptions across different years of experience.

Zhu et al. (2013) argued that only a small fraction of developers are well
trained in secure software development. This is because most Computer Science
(CS) and Software Engineering (SE) curricula train students in programming and
application development, but not secure software development. As a result, CS and
SE graduates are not trained in programming techniques to reduce security bugs
and vulnerabilities and would unintentionally introduce avoidable security bugs in
the application. While this result is not surprising, we believe it should be a call to
integrate software security education in the curriculum for the next generation of
CS and SE graduates.

274

Measuring Developers’ Software Security Skills, Usage, and Training Needs

What Is the Relationship Between Usage of,
and Skill in Software Security Activities?

Correlation analysis between indicated skill levels and usage of activities shows that
skill drives usage of activities. In both organizations, the correlation result is very high
at more than 0.9 and statistically significant at 95% confidence interval. Regardless
of the cost of activity, we found that teams do well in activities where they indicate
high level of skills. The studies by Baca & Carlsson (2011) and Ayaew et al. (2013)
report code review to be detrimental in cost and benefit and pair programming to
have marginal benefit and detrimental in cost to agile. However, our findings reveal
that code review and pair programming are well practiced in both organizations and
are areas where respondents indicate high skill levels.

Pair programming is an important practice in eXtreme Programming (XP) and
by itself includes the art of code review (Beck, 1999). In addition, peer code review
is claimed to catch about 60% of the defects (Boehm & Basili, 2005). These could
explain the reasons both organizations have adopted these practices. The work of
Dybå et al. (2004) that investigated the factors affecting software developer acceptance
and utilization of Electronic Process Guides (EPG) corroborates this finding. Their
results suggest that software developers are mainly concerned about the usefulness
of the EPG regardless of whether it is easy to use, how much support they receive,
or how much they are influenced by others.

Figure 4. % of Training Needs across all roles compared between the 2 organizations

275

Measuring Developers’ Software Security Skills, Usage, and Training Needs

On the other hand, we could hypothesize that management can increase usage
in certain software security activity if they invest into increasing the team’s skill
in this area.

DISCUSSION

A brief summary of our research questions and results (Oyetoyan et al., 2017) is
presented in Table 6. Note that despite the interpretation by Rindell et al. (Rindell et
al., 2017), our contribution is not intended as another secure software development
lifecycle.

Through interviews we discovered that certain security relevant tools (e.g. static
analysis tools) are not used for finding security defects. This implies that simply
making tools available will not improve security, unless the tools are actually used
with security in mind.

Although both organizations deliver solutions for critical infrastructures, Org-
1 has a higher level of security awareness, which is driven by the security expert
group. This context is important in order to understand why this organization’s usage
is higher than the other. We need to further investigate the drivers for increase in
software security adoption in an organization, such as research efforts, government
funding and policies, education, and commitments by management to security.

Furthermore, the results from our survey show gaps in secure software development
and opportunity for improvement. Among the development team, secure coding is
practiced by less than half of the developers in both organizations. Invariably, over
50% of the developers are not paying attention to secure coding. The main question
is whether this number is an acceptable risk for the management. Similarly, secure
design is practiced by less than 40% of architects in both organizations. The high

Table 6. Summary of results per research question

RQs Conclusion

 1. Which software security activities are most
used within the organizations?

Use of code review tool, static code analysis, and pair
programming

 2. Which training needs are important to the
organizations?

The organizations agree on secure design and secure
coding, and additionally they identify training need in
penetration testing and risk analysis

 3. How are security experience and the perceived
need for software security training influenced by
years of developer of experience?

Security experience increases with development
experience, but perceived need for software security
varies between organizations

 4. What is the relationship between usage of, and
skill in software security activities?

Usage increases for activities where teams have a high
level of skill

276

Measuring Developers’ Software Security Skills, Usage, and Training Needs

level of individual and team autonomy in agile settings requires a careful balance
with respect to software security integration. While different approaches to integrate
software security into agile teams have been proposed (Baca et al., 2015; Bartsch,
2011; ben Othmane et al., 2014), there are still many challenges about how to achieve
it. The cost and benefit in terms of additional activity such as in ben Othmane et
al. (2014) and additional security personnel, as in Baca et al. (2015) need to be
acceptable to the agile team and management.

An important result from our survey is that secure design is the highest training
need expressed by all roles in both organizations. We believe that this is not
accidental. The need for secure design is corroborated in Arce et al. (2014). Critics
of agile software development have argued that the lack of attention to design and
architectural issues is a serious limitation of the agile approach (Dybå & Dingsøyr,
2008; Rosenberg & Stephens, 2003). About 60% of defects in a system is introduced
during design (Bernstein & Yuhas, 2005), and fixing defects after release is a hundred
times costlier than fixing it during requirement or design (Boehm & Basili, 2005).
In terms of security defects in design, the strongest statement comes from a group
of software security professionals (Arce et al., 2014): While a system may always
have implementation defects, we have found that the security of many systems is
breached due to design flaws. In agile development, the lack of a complete overview
of the system leaves room for unidentified risks during design.

Our impression is that none of the top 10 security design flaws (Arce et al.,
2014) are particularly well known among developers, but many fall into the trap
of equating authentication mechanisms with software security. Thus, this aspect is
often implicitly covered, when good-practice standard authentication solutions are
employed.

Clearly, there is a need for more practice-oriented research efforts to find an
acceptable approach that can help agile organization move towards their “adequate”
level of security. We argue that security loopholes could be created by any team or
individual within the organization with weak approaches to security. There are two
major points to ponder in this result regarding software security adoption: 1) How
can skill be increased in specific software security areas relevant to the development
team and the goal of the organization? and 2) How can we create an environment
that make replication of software security successes possible among teams?
Creating a learning environment is central to point 1. Although agile development
and learning are highly related (Aniche & de Azevedo Silveira, 2011), building a
learning environment for security is not that easy. Differences in technologies and
team autonomy are just two of the challenges to consider.

277

Measuring Developers’ Software Security Skills, Usage, and Training Needs

CONCLUSION

We have presented an instrument for measuring the current usage, team competencies
and training needs in software security activities in agile organizations. Our survey
instrument complements maturity models such as BSIMM and OpenSAMM by
focusing on the individuals rather than on organizations.

We have found that the individuals in our small sample of organizations were
similar in terms of employing certain activities such as use of code review tool, pair
programming, and use of static code analysis/tool, but since these activities may
or may not be used specifically for security, particular focus on software security
is necessary for these to have an impact on software security. Furthermore, skill
drives the usage of activities, and we found that secure design may be the topmost
area where there is a need for training.

We have identified learning and knowledge transfer as important to increase
software security usage among teams.

ACKNOWLEDGMENT

The work in this chapter was supported by the Research Council of Norway through
the project SoS-Agile: Science of Security in Agile Software Development (grant
number 247678). We are grateful to our industrial partners and the survey respondents.

REFERENCES

Adams, E. (2012). The Biggest Information Security Mistakes that Organizations
Make and How to Avoid Making Them. Retrieved from https://web.securityinnovation.
com/the-biggest-information-security-mistakes-that-organizations-make

Allen, J. (2005). Governing for enterprise security (CMU/SEI-2005-TN-023).
Retrieved from http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7453

Aniche, M. F., & de Azevedo Silveira, G. (2011). Increasing learning in an agile
environment: Lessons learned in an agile team. Paper presented at the Agile
Conference (AGILE), 2011. 10.1109/AGILE.2011.13

Arce, I., Clark-Fisher, K., Daswani, N., DelGrosso, J., Dhillon, D., Kern, C., . . .
West, J. (2014). Avoiding The Top 10 Software Security Design Flaws. Retrieved
from https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

278

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Ayalew, T., Kidane, T., & Carlsson, B. (2013). Identification and Evaluation of
Security Activities in Agile Projects. In Secure IT Systems (pp. 139–153). Springer.

Babar, M. A. (2009). An exploratory study of architectural practices and challenges
in using agile software development approaches. Paper presented at the 2009 Joint
Working IEEE/IFIP Conference on Software Architecture & European Conference
on Software Architecture. 10.1109/WICSA.2009.5290794

Baca, D., Boldt, M., Carlsson, B., & Jacobsson, A. (2015). A Novel Security-
Enhanced Agile Software Development Process Applied in an Industrial Setting.
Paper presented at the Availability, Reliability and Security (ARES), 2015 10th
International Conference on. 10.1109/ARES.2015.45

Baca, D., & Carlsson, B. (2011). Agile development with security engineering
activities. Proceedings of the 2011 International Conference on Software and
Systems Process.

Bartsch, S. (2011). Practitioners’ perspectives on security in agile development.
Paper presented at the Availability, Reliability and Security (ARES), 2011 Sixth
International Conference on. 10.1109/ARES.2011.82

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10),
70–77. doi:10.1109/2.796139

ben Othmane, L., Angin, P., Weffers, H., & Bhargava, B. (2014). Extending the agile
development process to develop acceptably secure software. IEEE Transactions on
Dependable and Secure Computing, 11(6), 497-509.

Bernstein, L., & Yuhas, C. M. (2005). Trustworthy systems through quantitative
software engineering (Vol. 1). John Wiley & Sons. doi:10.1002/0471750336

Beznosov, K., & Kruchten, P. (2004). Towards agile security assurance. Proceedings
of the 2004 workshop on New security paradigms.

Boehm, B., & Basili, V. R. (2005). Software defect reduction top 10 list. In
Foundations of empirical software engineering: the legacy of Victor R (Vol. 426).
Basili. doi:10.1007/3-540-27662-9

de Win, B., Scandariato, R., Buyens, K., Grégoire, J., & Joosen, W. (2009).
On the secure software development process: CLASP, SDL and Touchpoints
compared. Information and Software Technology, 51(7), 1152–1171. doi:10.1016/j.
infsof.2008.01.010

279

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development:
A systematic review. Information and Software Technology, 50(9), 833–859.
doi:10.1016/j.infsof.2008.01.006

Dybå, T., Moe, N. B., & Mikkelsen, E. M. (2004). An empirical investigation on
factors affecting software developer acceptance and utilization of electronic process
guides. Software Metrics, 2004. Proceedings. 10th International Symposium on.
10.1109/METRIC.2004.1357905

Fontenele, M. P. (2017). Designing a method for discovering expertise in cyber
security communities: an ontological approach. University of Reading.

Greenwood, D. J., & Levin, M. (2006). Introduction to action research: Social
research for social change. SAGE Publications.

Howard, M., & Lipner, S. (2006). The Security Development Lifecycle. Microsoft
Press.

ISO/IEC. (2009). Information technology -- Security techniques -- Evaluation criteria
for IT security -- Part 1: Introduction and general model: ISO/IEC 15408-1:2009.

ISO/IEC. (2011). Information technology -- Security techniques -- Application
security -- Part 1: Overview and concepts: ISO/IEC 27034-1:2011.

Jaatun, M. G. (2012). Hunting for Aardvarks: Can Software Security be Measured?
In G. Quirchmayr, J. Basl, I. You, L. Xu, & E. Weippl (Eds.), Multidisciplinary
Research and Practice for Information Systems (pp. 85–92). Springer Berlin
Heidelberg. doi:10.1007/978-3-642-32498-7_7

Jaatun, M. G., Cruzes, D. S., Bernsmed, K., Tøndel, I. A., & Røstad, L. (2015).
Software Security Maturity in Public Organisations. Paper presented at the
Information Security: 18th International Conference, ISC 2015, Trondheim, Norway.
10.1007/978-3-319-23318-5_7

McGraw, G. (2004). Software Security. IEEE Security and Privacy, 2(2), 80–83.
doi:10.1109/MSECP.2004.1281254

McGraw, G. (2005). The 7 Touchpoints of Secure Software. Dr. Dobb’s Journal.

McGraw, G. (2006). Software Security: Building Security In. Addison-Wesley
Professional.

McGraw, G., Migues, S., & West, J. (2018). Building Security In Maturity Model
(BSIMM 9). Academic Press.

280

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Microsoft. (2012). Security Development Lifecycle for Agile Development. Retrieved
from https://msdn.microsoft.com/en-us/library/windows/desktop/ee790621.aspx

Morrison, P., Smith, B. H., & Williams, L. (2017). Surveying security practice
adherence in software development. Paper presented at the Hot Topics in Science
of Security: Symposium and Bootcamp. 10.1145/3055305.3055312

OWASP. (2006). CLASP concepts. Retrieved from https://www.owasp.org/index.
php/CLASP_Concepts

OWASP. (2016). Software Assurance Maturity Model. Retrieved from http://www.
opensamm.org/

Oyetoyan, T. D., Cruzes, D. S., & Jaatun, M. G. (2016). An Empirical Study on the
Relationship between Software Security Skills, Usage and Training Needs in Agile
Settings. Paper presented at the Availability, Reliability and Security (ARES), 2016
11th International Conference on. 10.1109/ARES.2016.103

Oyetoyan, T. D., Jaatun, M. G., & Cruzes, D. S. (2017). A Lightweight Measurement
of Software Security Skills, Usage and Training Needs in Agile Teams. International
Journal of Secure Software Engineering, 8(1), 27. doi:10.4018/IJSSE.2017010101

Potter, L. E., & Vickers, G. (2015). What skills do you need to work in cyber security?:
A look at the Australian market. Proceedings of the 2015 ACM SIGMIS Conference
on Computers and People Research. 10.1145/2751957.2751967

Rindell, K., Hyrynsalmi, S., & Leppänen, V. (2017). Busting a Myth: Review of Agile
Security Engineering Methods. Proceedings of the 12th International Conference
on Availability, Reliability and Security. 10.1145/3098954.3103170

Robinson, H., & Sharp, H. (2004). Extreme Programming and Agile Processes
in Software Engineering. 5th International Conference, XP 2004 Proceedings.
10.1007/978-3-540-24853-8_16

Rosenberg, D., & Stephens, M. (2003). Extreme programming refactored: the case
against XP. Apress.

Wäyrynen, J., Bodén, M., & Boström, G. (2004). Security engineering and eXtreme
programming: An impossible marriage? In Extreme programming and agile methods-
XP/Agile Universe 2004 (pp. 117–128). Springer. doi:10.1007/978-3-540-27777-4_12

Zhu, J., Lipford, H. R., & Chu, B. (2013). Interactive support for secure programming
education. Proceeding of the 44th ACM technical symposium on Computer science
education. 10.1145/2445196.2445396

281

Measuring Developers’ Software Security Skills, Usage, and Training Needs

APPENDIX

SURVEY INSTRUMENT AND EXPLANATION OF TERMS

Software Security Activities in Agile
Software Development Team

Instructions: Please mark the options that best fit your responses to these questions.

Section A: General Information

(Multiple answers are possible, see Table 7)

Section B: Capability and Interest

See Tables 8 and 9.

Table 7.

Developer Tester Architect Project
Manager

Product
Owner

Others
(Please indicate)

What is
your role(s)
in the agile
team?

Scrum
Extreme

Programming
(XP)

Feature
Driven

Development
(FDD)

Lean
Software

Development

Crystal
Methods Kanban

Agile
Unified
Process
(AUP)

Dynamic
Systems

Development
Method
(DSDM)

Others

Which
Agile
Method-
ologies do
you use?

Yes No

Do you have
software
security
experience?

No of years with software development:

Name of product:

Type of product (e.g. web, mobile, network, control system, e-commerce, etc.):

282

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Section C: Training

Instruction: Please tick the activities you would like to receive training on (see
Table 10).

Comment/Feedback

Please provide any comment or feedback in the space below.
__

Explanation of Terms in Questionnaire

See Table 11.

Table 8.

Novice [1] Basic [2] Moderate [3] High [4] Expert [5]

Have no
experience
working in
this area

You have the level
of experience gained
in a classroom and/
or experimental
scenarios or as a
trainee on-the-job.
You are expected
to need help when
performing in this
area

You are able to
successfully complete
tasks in this area as
requested. Help from
an expert may be
required from time
to time, but you can
usually perform the
skill independently

You can perform the
actions associated
in this area without
assistance. You
are certainly
recognized within
your immediate
organization as “a
person to ask” when
difficult questions
arise regarding this
area.

You are known
as an expert in
this area. You can
provide guidance,
troubleshoot and
answer questions
related to this area
of expertise and the
field where the skill
is used.

283

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Table 9.

Currently
Do/Use It

What Is Your Skill Level in This
Activity? What Is Your Level Of Interest in This Activity?

Novice
1 2 3 4 Expert

5
Don’t
know

Not
Interested

Slightly
Interested

Moderately
Interested

Very
Interested

Don’t
Know

Security code
review

Secure design

Secure coding

Static code
analysis tool

Dynamic code
analysis tool

Code review
tool

Threat
modeling tool

Static code
analysis

Dynamic code
analysis

Vulnerability
assessment

Penetration
testing

Red team
testing

Fuzz testing

Dynamic testing

Risk-based
testing

Threat
modelling

Attack surface
analysis

Risk analysis

Role matrix
identification

Asset analysis

Countermeasure
techniques

Pair
programming

Functioning
as project
security officer/
Champion

Writing abuse
stories/cases

Gathering
security
requirements

Incident
Response
Management

284

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Table 10.

I want to have training
in this activity/tool

Threat and Risk Management

Threat modeling for secure software

Attack surface analysis

Threat countermeasure analysis

Asset analysis

Risk analysis

Secure design & coding activities

Secure coding

Pair programming

Secure design (e.g. attack surface reduction, secure defaults)

Security tools

Static code analysis tool

Dynamic code analysis tool

Code review tool

Threat modeling tool

Security Testing
(Note that several techniques exist for security testing and some of these techniques may be overlapping)

Penetration testing

Dynamic testing (Black box testing)

Fuzz testing

White box testing (Including manual code review)

Risk-based testing

Release Activity

Incident Response Management

285

Measuring Developers’ Software Security Skills, Usage, and Training Needs

Table 11.

I Term Definition Examples

A Abuse stories Brief and informal stories that identify how attackers may abuse the system
and jeopardize stakeholders’ assets

Attack surface All different points where an attacker could get into a system and get data out
of the system

 • user interface forms & fields
 • HTTP headers and cookies
 • APIs
 • Files
 • Databases
 • etc.

Asset analysis

Identifying both physical and abstract assets of the organization. Assets are
threat target. For example, an asset of an application might be a list of clients
and their personal information; this is a physical asset. An abstract asset might
be the reputation of an organization. Analysis may include identifying the trust
levels (i.e. The level of access required to access the entry point is documented
here)

C Code signing Providing the stakeholder with a way to validate the origin and integrity of
the system

Countermeasure Action taken in order to protect an asset against threats

 • Threat – Tampering with
data
 • Countermeasures –
appropriate authorization, hashes,
digital signatures, etc.

D Dynamic
analysis tools Automated runtime testing tools • Penetration testing tools

(e.g. ZAP, IBM AppScan, etc)

Dynamic testing Run-time verification of software programs
 • memory corruption
 • user privilege issues
 • etc.

F Final security
review

A deliberate examination of all the security activities performed on a software
application prior to release

Fuzz testing Dynamic testing used to induce system failure by deliberately introducing
malformed or random data to an application

I Incident
response plan

A set of written instructions for detecting, responding to and limiting the
effects of an information security event

P Pair
programming

Two people create code where one writes the code while the other reviews
each line of code as it is typed.

Penetration
testing

Proactive and authorized attempt to evaluate the security of a system, by
finding and exploiting vulnerabilities, technical flaws, or weaknesses to
compromise the system

Q Quality gates/
bug bars

Minimum acceptable levels of security and privacy quality before the code
goes into production

 • All SQL statements must be
parameterized before deployment
 • All API classes must be
reviewed before deployment
 • Mandatory check for known
vulnerabilities of all 3rd party
libraries
 • All critical security bugs
must be resolved

R Red team testing Simulate real-world attacks against an organization, challenging its defenses
against electronic, physical and social exploits

Red team – an external[1] team
with the goal to hack the system

Risk analysis
An approach of gathering requisite data to make informed decision based on
knowledge about asset, vulnerability, threat, impact, countermeasures and
probability

Risk-based
testing

Test approach that takes a risk into account by identifying and analyzing the
risks related to the system

Role matrix Identifying all possible user roles and their access levels to the system

continued on following page

286

Measuring Developers’ Software Security Skills, Usage, and Training Needs

I Term Definition Examples

S Secure coding Development practices that assure secure software
 • Input validation
 • parameterized SQL
 • etc.

Secure design Design practices that assure secure software

 • reducing attack surface
during design
 • placement of security checks
before input processing
 • etc.

Security code
review Manual review of source code for finding security bugs

Security metrics Metrics that measure organization’s defense against attacks

 • Defect density
 • Windows of exposure (how
long a security defect is open)
 • #Vulnerability
 • etc.

Security patterns A well understood solution to security problems

Security testing An activity to assess a system for security bugs (technical flaws, vulnerabilities
or weaknesses)

 • Vulnerability assessment
 • Penetration testing
 • Dynamic testing (black box
testing)
 • Code review (white box
testing)
 • Automated analysis
(dynamic and static)

Static code
analysis Verification of source code

Static code
analysis tools Automated code review tools

 • IDE vulnerability rule
checker
 • Anti-XSS library
 • etc.

T Threat modeling An approach to identify, quantify, and address the security risks associated
with a system

 • identifying external
dependencies
 • entry points
 • assets
 • trust levels
 • data flow diagrams
 • Categorize threats (attacker
goals) e.g. Spoofing
 • Determine countermeasures
(e.g. security controls)
 • etc.

U UMLSec Extension of Unified Modeling Language that allows to express security-
relevant information within the diagrams in a system specification

V Vulnerability
assessment

Scanning for security issues using a combination of automated tools and
manual assessment techniques. The goal is to confirm the presence of a
vulnerability without actually exploiting it

Table 11. Continued

