
The International Journal of Secure Software Engineering is indexed or listed in the following: ACM Digital Library; 
Bacon’s Media Directory; Cabell’s Directories; DBLP; Google Scholar; INSPEC; JournalTOCs; MediaFinder; The 
Standard Periodical Directory; Ulrich’s Periodicals Directory

Editorial Preface
iv	 Khaled M. Khan, Qatar University, Doha, Qatar

Research Articles

1	 A Lightweight Measurement of Software Security Skills, Usage and Training Needs in Agile Teams;

Tosin Daniel Oyetoyan, Department of Software Engineering, Safety & Security, SINTEF Digital, Trondheim, 
Norway 

Martin Gilje Jaatun, Department of Software Engineering, Safety & Security, SINTEF Digital, Trondheim, 
Norway 

Daniela Soares Cruzes, Department of Software Engineering, Safety & Security, SINTEF Digital, Trondheim, 
Norway 

28	 Jif-Based Verification of Information Flow Policies for Android Apps;

Lina M. Jimenez, Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia 

Martin Ochoa, Singapore University of Technology and Design, Singapore 

Sandra J. Rueda, Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia 

43	 Case Study of Agile Security Engineering: Building Identity Management for a Government Agency;

Kalle Rindell, Informaatioteknologian laitos, University of Turku, Turku, Finland 

Sami Hyrynsalmi, Tampere University of Technology, Pori, Finland 

Ville Leppänen, Informaatioteknologian laitos, University of Turku, Turku, Finland 

Copyright
The International Journal of Secure Software Engineering (IJSSE) (ISSN 1947-3036; eISSN 1947-3044), Copyright © 2017 IGI Global. All 
rights, including translation into other languages reserved by the publisher. No part of this journal may be reproduced or used in any form or by any 
means without written permission from the publisher, except for noncommercial, educational use including classroom teaching purposes. Product or 
company names used in this journal are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim 
of ownership by IGI Global of the trademark or registered trademark. The views expressed in this journal are those of the authors but not necessarily of 
IGI Global.

Volume 8 • Issue 1 • January-March-2017 • ISSN: 1947-3036 • eISSN: 1947-3044
An official publication of the Information Resources Management Association

International Journal of Secure Software Engineering 

Table of Contents



DOI: 10.4018/IJSSE.2017010101

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

A Lightweight Measurement of 
Software Security Skills, Usage and 
Training Needs in Agile Teams
Tosin Daniel Oyetoyan, Department of Software Engineering, Safety & Security, SINTEF Digital, Trondheim, Norway

Martin Gilje Jaatun, Department of Software Engineering, Safety & Security, SINTEF Digital, Trondheim, Norway

Daniela Soares Cruzes, Department of Software Engineering, Safety & Security, SINTEF Digital, Trondheim, Norway

ABSTRACT

Although most organizations understand the need for application security at an abstract level, 
achieving adequate software security at the sharp end requires taking bold steps to address security 
practices within the organization. In the Agile software development world, a security engineering 
process is unacceptable if it is perceived to run counter to the agile values, and agile teams have thus 
approached software security activities in their own way. To improve security within agile settings 
requires that management understands the current practices of software security activities within 
their agile teams. In this study, the authors have used a survey instrument to investigate software 
security usage, competence, and training needs in two agile organizations. They find that (1) The 
two organizations perform differently in terms of core software security activities, but are similar 
when secondary activities that could be leveraged for security are considered (2) regardless of cost 
or benefit, skill drives the kind of activities that are performed (3) Secure design is expressed as 
the most important training need by all groups in both organizations (4) Effective software security 
adoption in agile setting is not automatic, it requires a driver.

Keywords
Agile Software Development, Empirical Study, Software Security, Software Security Activities

1. INTRODUCTION

Protecting the organization’s assets from security threats is vital. Security cannot be treated as an 
add-on functionality or isolated product feature (Gary McGraw, 2006), and it is thus important that 
security is “built-in” in the process and the product. However, a traditional security engineering 
process is often associated with additional development efforts and is likely to invoke resentment 
among agile development teams (ben Othmane et al., 2014; Beznosov & Kruchten, 2004). A software 
security approach tailored to the agile mind-set thus seems necessary.

Some approaches have been proposed to integrate security activities into agile development, e.g., 
the Microsoft SDL for Agile (Microsoft, 2012). However, these approaches have been criticised for 
looking similar to the traditional versions in terms of workload (e.g., performing a long list of security 
verification and validation tasks) (ben Othmane et al., 2014). As a result, “agile” organizations have 
approached software security in a way that fits their process and practices. Statistics show that more 
than 70% of reported vulnerabilities are in the application layer (Fong & Okun, 2007) and not the 
network. Thus, regardless of whether agile is perceived to be incompatible with any particular secure 
software development lifecycle, the major discussion we should have is how to improve security 

1



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

2

within the agile context (Bartsch, 2011). Previous studies (Ayalew et al., 2013; Baca & Carlsson, 
2011) have investigated which security activities are practiced in different organizations, and which 
are compatible with agile practices from cost and benefit perspectives. Using a survey of software 
security activities among software practitioners, they identify and recommend certain security 
activities that are compatible with agile practices such as; eliciting security requirements, using a role 
matrix, risk analysis, employing secure design principles, drawing countermeasure graphs, adhering 
to coding rules, wielding security tools, penetration testing, and operational planning and readiness.

While these activities could be argued to be beneficial and cost effective to integrate, there are 
still gaps between what is “adequate” security (Allen, 2005), and what is currently practiced within 
several organizations. According to Allen (2005), adequate security is defined as “The condition 
where the protection and sustainability strategies for an organization’s critical assets and business 
processes are commensurate with the organization’s tolerance for risk.”

The research presented here is motivated based on the perceived knowledge gaps in software 
security in agile software development organizations in Norway (Jaatun et al., 2015). In order to 
address these gaps, management must first understand the current status of software security practices 
and capability within their organization. This study is carried out in 2 organizations (in the following 
referred to as “Org-1” and “Org-2”), that develop software in telecommunication and transportation, 
respectively (see section 3.2.1 for more information on the two organizations). This paper extends 
our previous work (Oyetoyan et al., 2016) investigating existing practice, skills, and training needs 
within agile teams, by significantly expanding the background, exploring new dimensions of the data 
with additional research questions, and deeper discussion of the results. We want to know more on 
the training needs and understand the relationships between skills and usage of security activities 
among teams and across roles. The findings are important to guide management decisions towards 
improving security within their organization.

The Building Security In Maturity Model (BSIMM) (Gary McGraw et al., 2016) has also been 
used to measure security practices in different organizations. Jaatun et al. (2015) used a questionnaire 
based on the BSIMM activities to measure the security maturity of Norwegian public organizations. 
They found that there is a need for improvements in metrics, penetration testing and training 
developers in secure development. BSIMM is useful for measuring the software security maturity 
of an organization and helping them formulate overall security strategy (Gary McGraw et al., 2016). 
However, it is not perceived as a lightweight measurement tool to directly measure developers’ skill 
or usage of software security activities within a development team. Therefore, together with the two 
organizations under study, we have jointly developed a lightweight instrument consisting of software 
security activities from OWASP CLASP, Microsoft SDL and the Cigital Touchpoints (de Win et al., 
2009) for this purpose.

The rest of this paper is organised as follows: We describe the background in Section 2. We 
describe our research methodology and study design in Section 3. We then present and discuss the 
results in Section 4, and finally we offer our conclusions in Section 5.

2. BACKGROUND

Software security has existed as a distinct field of research for over a decade, and reached prominence 
with the publication of the book “Software Security” (McGraw, 2006).

2.1. Secure Software Development Lifecycles
A number of Secure Software Development Lifecycles (SSDLs) have been proposed, in the following 
we briefly introduce to most important ones as they relate to this paper.



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

3

2.1.1. OWASP CLASP
The Comprehensive, Lightweight Application Security Process (CLASP) (OWASP, 2006) was a 
project under the Open Web Application Security Project (OWASP). A high-level overview of CLASP 
is given in Figure 1. CLASP was based on seven best practices:

1. 	 Institute awareness programs
2. 	 Perform application assessments
3. 	 Capture security requirements
4. 	 Implement secure development practices
5. 	 Build vulnerability remediation procedures
6. 	 Define and monitor metrics
7. 	 Publish operational security guidelines

CLASP has not been updated since 2006, and is currently considered abandoned. However, some 
of the CLASP activities can still be considered useful by themselves.

Figure 1. CLASP Overview



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

4

2.1.2. Microsoft SDL for Agile
The Microsoft Security Development Lifecycle for Agile Development (SDL-Agile) (Microsoft, 
2012) is the agile version of the traditional Microsoft SDL (Howard & Lipner, 2006). SDL-Agile is 
split into three types of activities (see Table 1);

•	 “Every-Sprint Requirements” (S) – these activities should be performed in every iteration
•	 “Bucket Requirements” (B) – these activities must be performed on a regular basis during the 

development lifecycle; there are three types of such requirements defined (each type referred to 
as a bucket) and typically one is picked from each bucket in each sprint

•	 “One-Time Requirements” (O) – these activities are typically only need to be performed once 
at the beginning of the project (see Figure 2).

Figure 2. The SDL-Agile One-Time and Bucket Requirements Illustrated

Table 1. MS SDL-Agile activities

1. 
Training

2. 
Requirement

3. Design 4. Implementation 5. 
Verification

6. Release 7. 
Response

1. Core 
Security 
Training

2. Establish 
Security 
Requirements 
(O)

5. Establish Design 
Requirements (O)

8. Use Approved 
Tools (S)

11. Perform 
Dynamic 
Analysis (B)

14. Create 
an Incident 
Response 
Plan (O)

17. 
Execute 
Incident 
Response 
Plan

3. Create 
Quality Bug 
Bars (B)

6. Perform Attack 
Surface Analysis/
Reduction (O)

9. Deprecate Unsafe 
Functions (S)

12. Perform 
Fuzz Testing 
(B)

15. 
Conduct 
Final 
Security 
Review (S)

4. Perform 
Security and 
Privacy Risk 
Assessments 
(O)

7. Use Threat 
Modeling (S)

10. Perform Static 
Analysis (S)

13. Conduct 
Attack 
Surface 
Review (B)

16. Certify 
Release 
and 
Archive 
(S)



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

5

2.1.3. Cigital Touchpoints
The Cigital Touchpoints (Gary McGraw, 2004; Gary McGraw, 2005) were introduced as a lightweight 
way of distilling the essence of practical software security. They have been presented slightly different 
over the years, but the essence is as illustrated in Figure 3.

In order of effectiveness, the 7 touchpoints are:

1. 	 Code review
2. 	 Architectural risk analysis
3. 	 Penetration testing
4. 	 Risk-based security tests
5. 	 Abuse cases
6. 	 Security requirements
7. 	 Security operations

2.2. Measuring Software Security Activities
Measuring software security is difficult (Jaatun, 2012), and therefore second-order metrics are often 
employed, i.e., measuring what kind of software security activities are performed when developing 
the software.

2.2.1. Open SAMM
The Software Assurance Maturity Model (SAMM or OpenSAMM) (OWASP, 2016) is an open software 
security framework divided into four business functions: Governance, Construction, Verification and 
Deployment. Each business function is composed of three security practices, as shown in Table 2.

Each practice is assessed at a maturity level from 1 to 3 (plus 0 for “no maturity”), and for each 
maturity level there is an objective and two activities that have to be fulfilled to achieve that level. 
OpenSAMM is “prescriptive”, in the sense that it advocates that all the specified activities must be 
performed in order to be a high-maturity organisation.

2.2.2. BSIMM
The Building Security In Maturity Model (BSIMM) first saw the light of day in 2009, based on a 
study of 9 software development organizations. BSIMM is structured around a Software Security 
Framework of four domains, each divided into three practices, as illustrated in Table 3. As is evident 
from the table, BSIMM shares origins with the OpenSAMM framework described above. The latest 

Figure 3. The Cigital Touchpoints



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

6

version of the BSIMM report (Gary McGraw et al., 2016) features results from 95 companies, 
measuring 113 different software security activities.

Although BSIMM also ranks software security activities in three maturity levels, it purports 
to be descriptive rather than prescriptive, and there is no implicit expectation that all organizations 
should do all 113 activities. Due to the large number of software security activities, BSIMM can said 
to be more specific than OpenSAMM. New BSIMM activities are added as they are observed in the 
field, and activities that fall out of use are removed. The maturity level of a given activity can also 
be changed from one version of the study to the next.

2.2.3. Common Criteria
The Common Criteria (ISO/IEC) (CC) emerged toward the end of the previous century as an 
amalgamation of the US DoD Trusted Computer Systems Evaluation Criteria (TCSEC, a.k.a. “the 
Orange Book”), the European ITSEC and the Canadian CTCPEC. CC is used in the security evaluation 
of computer-based systems, typically for military or critical infrastructure use. A fundamental concept 
of CC is that a Protection Profile containing functional security requirements and security assurance 
requirements is established. There are sets of predefined security assurance requirements which are 
referred to as Evaluation Assurance Levels (EAL1-7). The manufacturer will create a Security Target 
document which elaborates how the requirements of the Protection Profile are met, and finally an 
external evaluator will perform an evaluation to confirm or reject the claims.

CC is essentially a long list of requirements, and it is totally up to the Protection Profile which 
requirements are considered for a given product. Some of the assurance requirements are effectively 
software security activities.

2.3. Other Measurement Approaches
We assembled a first list of software security practices as documented in Table 4. This list is taken 
from previous studies (Ayalew et al., 2013; Baca & Carlsson, 2011). These formed the starting point 
when developing our survey instrument. The table is an adapted version from Ayalew et al. (2013), 
and we have merged activities (e.g. attack surface analysis to replace both identify attack surface and 
attack surface reduction) and also removed some activities (e.g. agree on definitions).

Comparing with the software security activities defined in BSIMM (Gary McGraw et al., 2016), 
we find that most of the activities in Table 4 are fully or partly covered by BSIMM, except:

Table 2. The OpenSAMM Software Security Framework

Governance Construction Verification Deployment

Strategy and Metrics Threat Assessment Design Review Vulnerability Management

Policy & Compliance Security Requirements Code Review Environment Hardening

Education & Guidance Secure Architecture Security Testing Operational Enablement

Table 3. The BSIMM Software Security Framework

Governance Intelligence SSDL Touchpoints Deployment

Strategy and Metrics Attack Models Architecture Analysis Penetration Testing

Compliance and 
Policy

Security Features and 
Design Code Review Software Environment

Training Standards and 
Requirements Security Testing Configuration Management and 

Vulnerability Management)



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

7

•	 UMLSec
•	 Requirements Inspection
•	 Countermeasure Graph
•	 Cost Analysis
•	 Identify Trust Boundary
•	 Pair programming

We also note that there are some elements identified by Ayalew et al. (2013) that appear to be 
duplicates, such as “Penetration Testing” and “Red Team Testing” (the touchpoints do not actually 
highlight red team testing), and “Risk Based Testing” and “Security Testing” (the touchpoints actually 
refer to “risk based security tests”). Our final questionnaire is explained in Section 3.2.2, and can be 
found in full in Appendix A (see Figure 9, Figure 10, and Figure 11).

Table 4. Software Security Activities from OWASP CLASP, Microsoft SDL, Cigital Touchpoints (CT) and Common Criteria (CC) 
and other (O) adapted from (Ayalew et al., 2013; Baca & Carlsson, 2011)

Initial Requirement Design Implementation Testing Release

Education 
(CLASP, 

SDL)

Security 
Requirements 
(CLASP, SDL, 

CT, CC)*

Risk Analysis (CT, 
CC)*

Security Tools 
(SDL)*

Dynamic 
Analysis 
(SDL)*

Incident 
Response 

Planning (SDL)*

Security 
Metrics 

(CLASP)

Quality Gates 
(SDL)*

Threat Modelling 
(CLASP, SDL)

Static Code Analysis 
(SDL, CT)*

Fuzz Testing 
(SDL)*

Final Security 
Review (SDL)

Design 
Requirements 

(SDL)

Attack Surface 
Analysis (SDL)*

Pair programming 
(O)*

Penetration 
Testing (CT)*

External Review 
(CT)

Abuse cases 
(CLASP, CT)*

Assumption 
Documentation (CT) Coding Rules (SDL)* Red Team 

Testing (CT)*
Code Signing 

(CLASP)

Critical Asset 
Analysis (CC)

Risk Based 
Testing (CT)*

Database 
Security 

Configuration 
(CLASP)

UMLSec (CC)

Security 
Code Review 

(CLASP, 
SDL)*

Repository 
Improvement 

(CC)

Requirements 
Inspection (CC)

Security 
Testing 

(CLASP)

Countermeasure 
Graph (O)*

Cost Analysis (SDL)

Security 
Architecture 

(CLASP)

Secure Design 
Principles 
(CLASP)*

Identify Trust 
Boundary (CLASP)



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

8

3. RESEARCH METHODOLOGY AND STUDY DESIGN

The sections below describe the research questions, hypotheses, data collection procedure employed 
in each case study, the instruments used, and the type of data analysis performed.

3.1. Research Questions
We make the following assumptions that:

•	 Developers have relatively different skills in software security regardless of the organization 
where they currently work.

•	 Agile organizations have different usage patterns with software security activities. An agile team 
is mostly autonomous and self-confident (Robinson & Sharp, 2004), and thus makes decisions 
that the team members think best contribute to customer satisfaction and product quality. Since 
activities are chosen in a voluntary manner in agile settings, we believe that organizations would 
use activities that best fit their process and business needs.

•	 Based on conventional wisdom, using an activity requires certain level of know-how. Hence, 
teams would use activities where they have competence.

•	 Experienced developers would most probably have taken security related decisions during their 
development career, and thus have knowledge and experience in software security.

Therefore, we investigate whether the skills, usage and training needs in software security 
activities in both organizations are similar or different. Understanding the similarities and differences 
between organizations also help during replications and adoptions of software security activities and 
programs across different organizations.

The research questions we investigate in this paper are:

RQ1: Which software security activities are most used within the organizations?
RQ2: Which skills are common to both organizations?
RQ3: Which training needs are important to the organizations?
RQ4: How are security experience and the perceived need for software security training influenced 

by years of developer of experience?
RQ5: What is the relationship between usage of, and skill in software security activities?

3.2. Data Collection
The research performed in this paper is performed in the context of the SoS-Agile project (http://www.
sintef.no/sos-agile), which investigates how to meaningfully integrate software security into agile 
software development activities. The project started in October 2015. The method of choice for the 
project is Action Research (Greenwood & Levin, 2006). Action research is an appropriate research 
methodology for this investigation for several reasons. First, the study’s combination of scientific 
and practical objectives is a good match with the basic tenet of action research, which is to merge 
theory and practice in a way that real-world problems are solved by theoretically informed actions 
in collaboration between researchers and practitioners (Greenwood & Levin, 2006). Therefore, the 
design of the instruments had to take in consideration the usefulness of the results for the companies 
and for research.

Two companies participated closely in the development of the survey questionnaire and have 
been part of the project since the beginning. In addition, for the interpretation and discussion of the 
results, the answers from the survey were complemented by document analysis of project artifacts, 
observations of meetings, and discussions with different stakeholders in the companies. Other focused 
interviews on specific topics, and the feedback from the survey results, were compared with the 
collected information about the organizational contexts and documents.



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

9

3.2.1. Company Context
This study is carried out in 2 organizations (Org-1 and Org-2) that develop software in 
telecommunication and transportation, respectively. Both organizations use agile practices (mostly 
Scrum and a mix of other agile practices) for their software development (see Table 5).

The team set-up for Org-1 (the telecom company) is co-located and distributed; some of the teams 
are situated in the same location, while some are distributed in different locations and continents. The 
organization has about 90 engineers. In addition, the telecom company has an information security 
professional group, as they need to comply with various standards (e.g., PCI DSS (Payment Card 
Industry, 2016)). The security group also coordinates security audit reports and follow-up on reported 
security issues. It is also important to mention that the department we are doing research with has a 
focus on developing new innovation projects.

Org-2 (the transportation software company) is a small/medium software organization with about 
50 developers distributed in three different countries. One security officer is officially designated to 
work on the security procedures and make the security work systematic.

3.2.2. Survey Questionnaire
The questionnaire was designed in phases, getting feedback from the companies and experts for getting 
to the final version. The first version of the questionnaire contained questions on different software 
security activities (asterisked activities in Table 4) from OWASP CLASP, Microsoft SDL for Agile, 
Common Criteria, and Cigital Touchpoints that have been used in previous studies (Ayalew et al., 
2013; Baca & Carlsson, 2011) (see Table 4). The table also includes additional practices such as “pair 
programming” and “drawing a countermeasure graph” considered in these studies; both are common 
security activities used in agile settings, e.g., when security experts rotate through programming pairs 
(Bartsch, 2011; Wäyrynen et al., 2004).

The instrument has been jointly reviewed by the authors, a security professional, a security 
champion and a project manager. The activities are classified differently than in the traditional software 
development lifecycle (SDLC), but they do, however, fit into each development lifecycle. The rationale 
is to invoke a different way of perceiving these activities than from a traditional viewpoint. This could 
make it possible to spot some assumptions such as for instance, whereas secure design involves many 
activities from “Threat modelling and risk management”, we can argue that software designers could 
make assumptions about secure design when they include, e.g., authentication mechanisms (Arce 
et al., 2014). However, performing a comprehensive threat analysis could reveal an insecure design, 
e.g., a possibility to bypass an authentication or authorization mechanism by directly navigating to 
an obscure webpage or resource.

Similarly, we have considered software security tools separately in order to identify strong and 
weak areas of usage and skills. Findings from the survey can trigger further questions, e.g., why 
certain implemented tools are not used within the organization, and this could lead to useful actions. 
These activities are divided into: Inception, threat modelling and risk management, secure design and 

Table 5. Demography of organizations

Org-1 Org-2

Dominant Agile Process Scrum (77%) Scrum (83%)

Industry Telecom Transport

Team setup Co-located/Distributed Distributed

Have Security Professionals Yes No

No. of Respondents 56 36



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

10

coding, security tools, security testing, and release. Table 6 shows the software security activities. In 
addition, we provided a short explanation of each term we have used in the survey for the respondents. 
We have used a scale for the skill level as shown in Table 7; the respondents were instructed to use 
this scale when assessing their own skill level.

For the software activities listed in Table 6, we asked the following 3 questions:

Q1 What is your skill level in this activity or tool?
Q2 Do you currently use this activity or tool? (Check box for yes)
Q3 Do you want to have training in this activity or tool? (Check box for yes)

In addition, we asked 2 questions about security and development experience:

Q4 Do you have security experience? (Yes or no)
Q5 Number of years with software development.

We designed both an online questionnaire and a paper-based version. We further refined the 
instrument by running a test on our industrial contacts, an independent architect and a post-doctoral 
fellow in software engineering. The target response time was 10-12 minutes. For the most part, the 
questionnaire was manually administered to the development teams on site. This increased the response 
rate, and provided the opportunity to clarify questions that respondents might have.

The final questionnaire and the explanation sheets are in the Appendix A.

3.3. Method of Analysis
Our unit of analysis is based on role within the agile team. These roles are developers, architects and 
testers. To analyse the relationship between skill (Q1) and usage (Q2), we use correlation analysis to 
find the relationship between both variables. In the case of Q1, which is an ordinal variable, we use 
the mean value (Knapp, 1990) as an interval variable to statistically compare the skill levels between 
the organizations. In addition, we take the proportion (ratio) of skill level between “moderate” and 
“expert” and compare among roles in the organizations.

To find the correlation between security experience (Q4) - nominal variable (Yes/No) and years of 
development (Q5) - interval variable, we group the interval variable (Q5) into ranges (e.g., 0-5, 6-10, 
> 10). For each group, we count and record the number of “yes” and “no” for Q4. We then find the 
ratio of “yes” and “no” for each category. We then used Pearson correlation to find the relationship 
between the computed ratios. A significant negative correlation implies that the higher the number 
of years with software development among respondents in the group, the lesser the number with no 
experience with security.

To assess how years of experience may influence training needs, we group the responses 
into two categories: 0-5years and >5 years. We then use Wilcoxon test to assess whether there is 
significant difference between the two groups. Finally, we use a ratio scale for the usage (Q2) and 
training needs (Q3) for the various software activities among teams and roles. For similarity analysis 
between organizations, we use Pearson and Spearman correlation tests. We have used the R statistical 
package1 for the analysis.

3.4. Assessment of Reliability and Validity
For this type of study, we are concerned about reliability, content validity, and construct validity (Dybå, 
2000). We ignore criterion validity because we are not concerned about predictions of any variable, 
rather we discuss external validity which is related to generalization of the results in this study.

Reliability concerns the degree to which an instrument will produce the same result if it is 
administered again. One major factor that could make the instrument unreliable in our case is the 



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

11

Table 6. Software Security Activities in the survey

Inception 

Functioning as a project security officer/champion 

Establishing security requirements 

Writing abuse stories/cases 

Addressing security logistics (e.g., creating relevant security fields) 

Threat Modeling & Risk Management

Threat Modeling 

Attack surface analysis 

Countermeasure techniques 

Assets analysis 

Risk analysis 

Role matrix identification 

Release

Incident response management 

Secure Design & Coding

Secure design (attack surface reduction, secure defaults)

Secure coding (secure guidelines)

Pair programming

Static code analysis

Use of Security tools

Threat modelling tool

Dynamic code analysis tool

Static code analysis tool

Code review tool

Security testing

Vulnerability assessment

Penetration testing

Red team testing

Fuzz testing

Dynamic testing

Risk-based security testing

Security code review



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

12

Table 7. Scale for skill level

Novice [1] Basic [2] Moderate [3] High [4] Expert [5]

Have no experience 
working in this area

You have the level 
of experience gained 
in a classroom and/
or experimental 
scenarios or as a 
trainee on-the-job. 
You are expected 
to need help when 
performing in this 
area

You are able to 
successfully complete 
tasks in this area as 
requested. Help from 
an expert may be 
required from time 
to time, but you can 
usually perform the 
skill independently

You can perform the 
actions associated 
in this area without 
assistance. You 
are certainly 
recognized within 
your immediate 
organization as “a 
person to ask” when 
difficult questions 
arise regarding this 
area

You are known 
as an expert in 
this area. You can 
provide guidance, 
troubleshoot and 
answer questions 
related to this area 
of expertise and the 
field where the skill 
is used

Table 8. Mapping of Software Security Activities

CLASP MS-SDL CT CC Others

Functioning as project security officer/champion * *

Gathering security requirements * * * *

Writing abuse stories/cases * *

Threat modeling * *

Attack surface analysis * *

Countermeasure techniques * *

Asset analysis *

Risk analysis * * *

Role matrix identification *

Secure design * * *

Secure coding * * *

Pair programming *

Static code analysis * * *

Threat modeling tool

Dynamic code analysis tool

Static code analysis tool

Code review tool

Vulnerability assessment

Penetration testing *

Red team testing

Fuzz testing *

Dynamic testing *

Risk-based testing *

Security code review * *

Incident response management * *



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

13

respondent’s interpretation of the software security activities. To avoid misunderstanding and provide 
equal level of reasoning about the terms, we have provided a description of the security activities 
for the respondents.

Content validity is concerned with how adequately the items in the instrument represent the 
domain of the concept being studied. The items on the instrument we have used are drawn from 
established software security activities (de Win et al., 2009) (e.g. OWASP CLASP, Microsoft SDL, 
and Touchpoints). Thus, content validity is built into the study from the beginning.

Construct validity is about whether the instrument really measures what it claims to measure. 
Determining the skill level (Q1) of a respondent on an activity could lead to erroneous results. For 
instance, someone with a basic skill level could over-estimate their own ability and assume an average 
skill. To mitigate this threat, we have used a scale (see Table 7) with a description for each scale 
category. Construct validity could also be an issue with Q4, since we have not used any description 
to help the respondent clarify his/her security experience. However, we think that respondents that 
say “yes” to this question must have had to take security related decisions during their job.

This study involves 2 small/medium sized organizations that are different in the type of market 
targets for their solutions. Both practiced agile development and have their development teams 
co-located and distributed. However, we cannot assume generalization of results across different 
organizations that use agile. There are other contexts that could make the result different or similar. 
Examples are the type of development model (e.g. outsourcing development model) or the type 
of software or market targets. More studies would be useful to see how correlated the different 
organizations are to the ones we have studied.

4. RESULTS

We present the results of the survey and analysis conducted among the two organizations, discussing 
each research question in turn.

4.1. RQI: Which Activities are Most Used Within the Organizations?
In Figure 4, Figure 5 and Figure 6 we report activities where current usage is 40% or more. Among 
developers in Org-1, use of code review tool, static code analysis, pair programming and secure coding 
(40.5%) are the most used activities. Similarly, in Org-2, use of code review tool, static code analysis 
(with or without tool), and pair programming are the most used activities. 63.4% of developers in 
Org-1 and 48% of developers in Org-2 say they are confident (moderate to expert skills) in writing 
secure code. This is slightly higher when compared to research performed by Microsoft (Adams, 
2012) where only 36% of developers are confident to write secure software. However, in terms of 
current practice in both organisations under study, only 40.5% in Org-1 and 23.8% in Org-2 currently 
indicate to engage in secure coding. This finding shows a gap of roughly 60% in Org-1 and 76% in 
Org-2 among developers.

Among architects in Org-1, use of code review tool, static code analysis, secure coding, 
countermeasure techniques, and penetration testing are the most used activities. In Org-2, use of code 
review tool, static code analysis/tool, pair programming, and dynamic code analysis tool are the most 
used activities. Only 33.3% of architects in Org-1 and 20% in Org-2 indicate to practice secure design. 
However, we found that architects in Org-1 perform some activities in secure design processes such 
as using countermeasure techniques (44%), role matrix identification (33%), asset analysis (11%), 
and performing attack surface analysis (11%). When comparing with Org-2, we found no usage of 
such secure design activities among the architects.

At 40% usage threshold (see Figure 7), testers in Org-1 use a code review tool, static code analysis, 
secure coding, a dynamic code analysis tool, and security code review, whereas testers in Org-2 use a 
code review tool, static code analysis (with or without tool), fuzz testing, dynamic testing, and risk-



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

14

based testing. We found that testers in Org-2 use testing approaches (e.g. risk-based testing) that are 
more suitable during high level testing such as integration or system testing.

The usage correlation results (Table 8) show that developers and architects are similar when 
we take use of code review tool, pair programming, and static code analysis/tool into consideration. 
However, when those are taken out, the correlation is very weak and not significant. Among the 
core security activities such as threat modeling, security testing, secure design and coding, the two 
organizations differ in the level of usage. The frequently used activities can be viewed as a platform 
that can be leveraged for secure software development. However, they do not necessarily have to be 
used for it.

The result among developers and architects indicates that Org-1 performs more core security 
activities than Org-2 (Table 9). For instance, Org-1 does secure design and coding twice as much 
as Org-2. 16% of the architects in Org-1 perform threat modeling, whereas none of the architects 
performs this activity in Org-2. The situation is the same for the remaining activities, security testing, 
requirements and release. The exception is in security testing and among testers, where Org-2 performs 
higher than Org-1. The obvious reason is that testers in Org-2 perform risk-based testing predominantly 
(50% usage), because the testing team is independent of the development team.

We interacted with the CISO in Org-1. One reason for higher usage in Org-1 could be attributed 
to the presence of the security expert group in Org-1, although it does not appear that the security 
group influences the choice of software security activities that are performed by the teams. The agile 
teams are very independent, innovative, and make their own decisions. Nevertheless, the level of 
awareness about security is higher in Org-1. According to the security professional we talked to in 
Org-1, this awareness among teams is due to tech talks, demos and other community building activities 
that have allowed the teams to learn from each other, and to develop ideas and ways of doing things 
across the development teams.

The similarities and differences in usages among architects and testers in both organizations 
could be explained by the fact that most of the architects in both organizations have a development 
role. While this also holds for testers in Org-1, it is different for Org-2.

The four more common activities are classified under the activities that can be leveraged to 
deliver security, but it is another question whether they are leveraged to tackle security, as we can 
argue that these activities can be used without focusing them strictly on security. For instance, a team 
may use static code analysis for checking code quality, conformance to style standard, detecting code 
complexities, and code smells. These do not translate directly to security defects. We can of course 
make another line of argument that every defect has a level of security risk, however, not every defect 
is security related. Secure coding standards and focused security test suites such as those published 
in NIST SARD2 project are specific for security defects. Pair programming and use of a code review 
tool may be focused on catching only “conventional” defects (and not security defects). We take this 
background into consideration in our analysis and discussion.

Table 9. Correlation analysis between organizations wrt skill, usage, and training needs grouped by roles (*= statistically 
significant at 95% confidence interval)

Developers Architects Testers

All Activities FUA All Activities FUA All Activities FUA

Skill 0.88* 0.68* 0.82* 0.76* 0.11 -0.084

Usage 0.86* 0.37 0.73* 0.26 0.52* 0.12

Training Needs 0.504* 0.678* 0.497* 0.453 0.064 0.186



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

15

4.2. RQ2: Which Skills are Common to Both Organizations?
In this Section, we report the activities where the majority (>= 50%) of respondents indicate to have 
moderate to expert skills. Among the developers in Org-1 (Figure 4), the majority of respondents 
have moderate or higher skills in use of code review tool, pair programming, secure coding, secure 
design, and static code analysis. In Org-2 the situation is relatively similar. The activities/tools are in 
the order: use of code review tool, pair programming, and static code analysis. Among respondents 
who function as architects, in Org-1, we found that in addition to the above activities indicated by 
developers, a majority of the architects indicate strong skill in security code review (73%). In Org-
2, a majority of architects in addition indicate to have skills in secure coding, secure design, use 
of dynamic code analysis tool, and countermeasure techniques. A majority of the testers in Org-1 
indicate to have skills in code review, pair programming, secure design, security code review, secure 
coding, static code analysis, and writing abuse stories/cases; whereas the majority of testers in Org-
2 indicate skills in static code analysis, fuzz testing, use of code review tool, dynamic testing, risk 
analysis, and risk-based testing.

We found strong statistically significant correlations or similarities in the skill level indicated by 
the developers (0.88) and architects (0.82) in both organizations. The correlation is lower when we 
removed the four common activities used by both groups. However, the competence areas indicated 
by testers differ in both organizations, as evidenced by the weak correlation of 0.11. Testers in Org-2 
indicate strong competencies in fuzz testing, dynamic testing, risk analysis, and risk-based testing. 
These are different from testers in Org-1 who indicate stronger competencies in security code review 
and writing abuse stories.

To understand the result for the tester group, we further investigated the team formation in 
each of the organization. The distribution shows that 90% of testers in Org-1 are developers while 
only 40% of testers in Org-2 have a development role. The majority of testers (60%) in Org-2 are 
therefore independent testers who are not involved in coding. They therefore are more disposed to 

Figure 4. Comparison of usage level among developers between the 2 organisations



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

16

Figure 5. Comparison of usage level among architects between the 2 organisations

Figure 6. Comparison of usage level among testers between the 2 organisations



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

17

testing approaches used during high level testing such as risk-based testing. This could well explain 
the reason for the dissimilarity among testers in both organizations.

In a similar way, to explain the similarity among architects in both organizations, we found that 
91% of architects in Org-1 are developers while all of the architects in Org-2 (100%) are developers. It is 
thus safe to conclude that developers are relatively similar in their skill levels across both organizations.

4.3. RQ3: Which Training Needs are Important to the Organizations?
In Org-1, secure design, secure coding, and penetration testing are the top-3 activities where the 3 
roles expressed training needs (see Figure 8). In Org-2, secure design, risk analysis, and secure coding 
are the top-3 training needs expressed by the 3 groups. Secure coding and dynamic code analysis 
tool are in the top 3 for developers. Dynamic testing (Black box testing) and attack surface analysis 

Table 10. Usage (Average %) of software security activities grouped by categories

Developers Architects Testers

Org-1 Org-2 Org-1 Org-2 Org-1 Org-2

Frequently Used Activities 57 62 72 60 75 44

Secure Design and Coding 38 19 39 20 44 25

Threat Modeling and Risk Management 13 11 16 0 18 4

Security Testing 19 12 18 10 25 28

Requirements and Release 19 6 15 0 33 0

Figure 7. % of developers with moderate - expert skill levels compared between the 2 organisations



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

18

are in the top 3 for architects and lastly, asset analysis and incident response management are in the 
top 3 for testers.

The strongest statistically significant correlation with respect to training needs is found in the 
developer group (0.68). The similarity between the training needs for the architect group is weak 
(0.45). There is no similarity in the training needs among testers in both organizations. There are 
some similarities in the expressed training needs among developers irrespective of the organization. 
For instance, secure design, secure coding and dynamic testing are common areas of training needs 
for teams in both organizations.

In conclusion, secure design is indicated as the single most important training need expressed by 
teams in both organizations. There is thus a need to focus on how to address and assist agile teams 
in the area of secure design. Architectural-related challenges such as lack of time, motivation to 
consider design choices, and unknown domain and untried solutions have been shown to affect agile 
development teams (Babar, 2009).

4.4. RQ4: How are Security Experience and the Perceived Need for Software 
Security Training Influenced by Years of Developer Experience?
Results (Table 10) show that training needs are similar across years of development experience in 
org-1. However, in org-2, those with more than 5 years of development experience express the need 
for more training significantly more than those with fewer years of experience. In org-1, the top-3 
training needs for both groups (0-5 years and >= 6years) are secure design (84.6 vs. 70.6), Penetration 
testing (53.9 vs. 50), and secure coding (46.2 vs. 64.7). In org-2, about 70% and more of those with >= 
6 years of experience show training needs in secure design, risk analysis and secure coding. Whereas 
only 37.5% and less of those with fewer years of experience express training needs in all areas.

Based on our observations and interactions with both organizations, the similarities and differences 
in training needs between experienced and less experienced groups in both organizations may be 
explained by the differences in the organizations’ cultures. Org-1 has a culture where teams learn 
from and interact with each other. They integrate new employees in their process through on-the-job 

Figure 8. % of Training Needs across all roles compared between the 2 organizations



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

19

training and introduction to job functions. We believe this culture could create similar training needs 
perceptions irrespective of years of development experience. However, in Org-2, there appears to be 
less synergy across teams. Creating on-the-job training and learning from each other are areas where 
Org-2 is currently improving.

In addition, 20% of those with 0-5 years in Org-1 have security experience which is in contrast 
with none in Org-2. Since this security experience is present in both groups in Org-1, it could create 
similar training needs perceptions for security activities.

We can thus infer that training needs may or may not be influenced by years of development 
experience. Factors such as an organization’s working culture, teams’ distribution, teams’ interactions, 
security experience, and how new employees are integrated could be responsible for training needs 
perceptions across different years of experience (Table 11).

Table 12 lists the ratio of respondents with (Yes) and without (No) security experience within 
each years of development category. In both organizations, more respondents with many years of 
development experience indicate to have security experience. Evidence from the analysis shows that 
most young graduates have not had software security education and training, as the “0-5” year range 
has the lowest proportion of respondents with security experience in both organizations.

Zhu et al. (2013) argued that only a small fraction of developers are well trained in secure software 
development. This is because most Computer Science (CS) and Software Engineering (SE) curricula 
train students in programming and application development but not secure software development. As 
a result, CS and SE graduates are not trained on programming techniques to reduce security bugs and 
vulnerabilities and would unintentionally introduce avoidable security bugs in the application. While 
this result is not surprising, we believe it should be a call to integrate software security education in 
the curriculum for the next generation of CS and SE graduates.

Table 11. Test of difference between years of experience and training needs

Mean Median Wilcoxon

0-5 >=6 0-5 >=6

Org-1 33.76 35.29 38.46 33.82 0.962

Org-2 17.36 52.52 12.50 50.00 8.282e-07

Table 12. Security experience vs. years of experience

Proportion

Org-1 Org-2

Years of development Yes No Yes No

0-5 0.2 0.8 0.00 1.00

6-10 0.5 0.5 0.17 0.83

>10 0.88 0.12 0.55 0.45

Pearson Correlation -1 -1

P-value <2.2e-16 <2.2e-16



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

20

4.5. RQ5: What is the Relationship Between Usage of, 
and Skill in Software Security Activities?
Correlation analysis between indicated skill levels and usage of activities show that skill drives 
usage of activities. In both organizations, the correlation result is very high at more than 0.9 and 
statistically significant at 95% confidence interval. Regardless of the cost of activity, we found that 
teams do well in activities where they indicate high level of skills. The studies by Baca & Carlsson 
(2011) and Ayaew et al. (2013) report code review to be detrimental in cost and benefit and pair 
programming to have marginal benefit and detrimental in cost to agile. However, our findings reveal 
that code review and pair programming are well practiced in both organizations and are areas where 
respondents indicate high skill levels.

Pair programming is an important practice in eXtreme Programming (XP) and by itself includes 
the art of code review (Beck, 1999). In addition, peer code review is claimed to catch about 60% of 
the defects (Boehm & Basili, 2005). These could explain the reasons both organizations have adopted 
these practices. The work of Dybå et al. (2004) that investigated the factors affecting software developer 
acceptance and utilization of Electronic Process Guides (EPG) corroborates this finding. Their results 
suggest that software developers are mainly concerned about the usefulness of the EPG regardless of 
whether it is easy to use, how much support they receive, or how much they are influenced by others.

On the other hand, we could hypothesize that management can increase usage in certain software 
security activity if they invest into increasing the team’s skill in this area.

4.6. Discussions and Implications
A brief summary of our research questions and results is presented in Table 13.

Through interviews we discovered that certain security relevant tools (e.g. static analysis tools) 
are not used for finding security defects. This implies that simply making tools available will not 
improve security, unless the tools are actually used with security in mind.

Although both organizations deliver solutions for critical infrastructures, Org-1 has a higher 
level of security awareness, which is driven by the security expert group. This context is important 
in order to understand why this organization’s usage is higher than the other. We need to further 
investigate the drivers for increase in software security adoption in an organization, such as research 
efforts, government funding and policies, education, and commitments by management to security.

Furthermore, the results from this survey show gaps in secure software development and 
opportunity for improvement. Among the development team, secure coding is practiced by less than 
half of the developers in both organizations. Invariably, over 50% of the developers are not paying 
attention to secure coding. The main question is whether this number is an acceptable risk for the 
management. Similarly, secure design is practiced by less than 40% of architects in both organizations. 
The high level of individual and team autonomy in agile settings requires a careful balance with 
respect to software security integration. While different approaches to integrate software security into 
agile teams have been proposed (Baca et al., 2015; Bartsch, 2011; ben Othmane et al., 2014), there 
are still many challenges about how to achieve it. The cost and benefit in terms of additional activity 
such as in ben Othmane et al. (2014) and additional security personnel, as in Baca et al. (2015) need 
to be acceptable to the agile team and management.

An important result from this survey is that secure design is the highest training need expressed 
by all roles in both organizations. We believe that this is not accidental. The need for secure design 
is corroborated in Arce et al. (2014). Critics of agile software development have argued that the lack 
of attention to design and architectural issues is a serious limitation of the agile approach (Dybå 
& Dingsøyr, 2008; Rosenberg & Stephens, 2003). About 60% of defects in a system is introduced 
during design (Bernstein & Yuhas, 2005), and fixing defects after release is a hundred times costlier 
than fixing it during requirement or design (Boehm & Basili, 2005). In terms of security defects in 
design, the strongest statement comes from a group of software security professionals (Arce et al., 
2014): While a system may always have implementation defects, we have found that the security of 



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

21

many systems is breached due to design flaws. In agile development, the lack of a complete overview 
of the system leaves room for unidentified risks during design.

Clearly, there is a need for more practice-oriented research efforts to find an acceptable approach 
that can help agile organization move towards their “adequate” level of security. We argue that security 
loopholes could be created by any team or individual within the organization with weak approaches 
to security. There are two major points to ponder in this result regarding software security adoption: 
1) How can skill be increased in specific software security areas relevant to the development team 
and the goal of the organization? and 2) How can we create an environment that make replication 
of software security successes possible among teams? Creating a learning environment is central to 
point 1. Although agile development and learning are highly related (Aniche & de Azevedo Silveira, 
2011), building a learning environment for security is not that easy. Differences in technologies and 
team autonomy are just two of the challenges to consider.

5. CONCLUSION

We have investigated the current usage, team competencies and training needs in software security 
activities among two agile organizations. We found that both organizations are similar in using 
certain activities such as use of code review tool, pair programming, and static code analysis/tool. 
These activities may or may not be used specifically for security. In core security activities such as 
threat modelling, secure design and coding, the two organizations are different. One performs more 
activities than the other due to a higher level of awareness created by the security expert group. 
Furthermore, skill drives the usage of activities. Secure design is consistently expressed by all roles 
in both organizations as the top most area where there is a need for training.

We identify learning and knowledge transfer as important to increase software security usage 
among teams. However, it requires that an enabling environment be built, as software security is 
unlikely to happen without a driver.

ACKNOWLEDGMENT

The work in this paper was supported by the Research Council of Norway through the project SoS-
Agile: Science of Security in Agile Software Development (247678). We are grateful to our industrial 
partners and the survey respondents.

Table 13. Summary of results per research question

RQs Conclusion

RQ1: Which software security activities are most used 
within the organizations?

Use of code review tool, static code analysis, and pair 
programming

RQ2: Which skills are common to both organizations? Use of code review tool, pair programming, and static 
code analysis

RQ3: Which training needs are important to the 
organizations?

The organizations agree on secure design and secure 
coding, and additionally they identify training need in 
penetration testing and risk analysis

RQ4: How are security experience and the perceived 
need for software security training influenced by years of 
developer of experience?

Security experience increases with development 
experience, but perceived need for software security varies 
between organizations

RQ5: What is the relationship between usage of, and skill 
in software security activities?

Usage increases for activities where teams have a high 
level of skill



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

22

REFERENCES

Adams, E. (2012). The Biggest Information Security Mistakes that Organizations Make and How to Avoid 
Making Them. Retrieved from https://web.securityinnovation.com/the-biggest-information-security-mistakes-
that-organizations-make

Allen, J. (2005). Governing for enterprise security (CMU/SEI-2005-TN-023). Retrieved from http://resources.
sei.cmu.edu/library/asset-view.cfm?assetid=7453

Aniche, M. F., & de Azevedo Silveira, G. (2011). Increasing learning in an agile environment: Lessons learned 
in an agile team. Paper presented at the Agile Conference (AGILE).

Arce, I., Clark-Fisher, K., Daswani, N., DelGrosso, J., Dhillon, D., Kern, C., . . . West, J. (2014). Avoiding The 
Top 10 Software Security Design Flaws. Retrieved from https://www.computer.org/cms/CYBSI/docs/Top-10-
Flaws.pdf

Ayalew, T., Kidane, T., & Carlsson, B. (2013). Identification and Evaluation of Security Activities in Agile 
Projects In Secure IT Systems (pp. 139–153). Springer.

Babar, M. A. (2009, September 14-17). An exploratory study of architectural practices and challenges in using 
agile software development approaches. Paper presented at the 2009 Joint Working IEEE/IFIP Conference on 
Software Architecture & European Conference on Software Architecture. doi:10.1109/WICSA.2009.5290794

Baca, D., Boldt, M., Carlsson, B., & Jacobsson, A. (2015). A Novel Security-Enhanced Agile Software 
Development Process Applied in an Industrial Setting. Paper presented at the 2015 10th International Conference 
on Availability, Reliability and Security (ARES). doi:10.1109/ARES.2015.45

Baca, D., & Carlsson, B. (2011). Agile development with security engineering activities. Paper presented at the 
2011 International Conference on Software and Systems Process.

Bartsch, S. (2011). Practitioners’ perspectives on security in agile development. Paper presented at the 2011 
Sixth International Conference on Availability, Reliability and Security (ARES). doi:10.1109/ARES.2011.82

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70–77. doi:10.1109/2.796139

ben Othmane, L., Angin, P., Weffers, H., & Bhargava, B. (2014). Extending the agile development process to 
develop acceptably secure software. IEEE Transactions on Dependable and Secure Computing, 11(6), 497-509.

Bernstein, L., & Yuhas, C. M. (2005). Trustworthy systems through quantitative software engineering (Vol. 1). 
John Wiley & Sons. doi:10.1002/0471750336

Beznosov, K., & Kruchten, P. (2004). Towards agile security assurance. Paper presented at the 2004 workshop 
on New security paradigms.

Boehm, B., & Basili, V. R. (2005). Software defect reduction top 10 list Foundations of empirical software 
engineering: the legacy of Victor R (Vol. 426). Basili. doi:10.1007/3-540-27662-9

de Win, B., Scandariato, R., Buyens, K., Grégoire, J., & Joosen, W. (2009). On the secure software development 
process: CLASP, SDL and Touchpoints compared. Information and Software Technology, 51(7), 1152–1171. 
doi:10.1016/j.infsof.2008.01.010

Dybå, T. (2000). An instrument for measuring the key factors of success in software process improvement. 
Empirical Software Engineering, 5(4), 357–390. doi:10.1023/A:1009800404137

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review. 
Information and Software Technology, 50(9), 833–859. doi:10.1016/j.infsof.2008.01.006

Dybå, T., Moe, N. B., & Mikkelsen, E. M. (2004). An empirical investigation on factors affecting software 
developer acceptance and utilization of electronic process guides. Paper presented at the 10th International 
Symposium on Software Metrics. doi:10.1109/METRIC.2004.1357905

Fong, E., & Okun, V. (2007). Web Application Scanners: Definitions and Functions. Paper presented at the 40th 
Annual Hawaii International Conference on System Sciences. doi:10.1109/HICSS.2007.611



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

23

Greenwood, D. J., & Levin, M. (2006). Introduction to action research: Social research for social change. 
SAGE publications.

Howard, M., & Lipner, S. (2006). The Security Development Lifecycle. Microsoft Press.

ISO/IEC. (2009). Information technology -- Security techniques -- Evaluation criteria for IT security -- Part 1: 
Introduction and general model: ISO/IEC 15408-1:2009.

Jaatun, M. G. (2012). Hunting for Aardvarks: Can Software Security be Measured? In G. Quirchmayr, J. Basl, I. 
You, L. Xu, & E. Weippl (Eds.), Multidisciplinary Research and Practice for Information Systems (pp. 85–92). 
Springer Berlin Heidelberg. doi:10.1007/978-3-642-32498-7_7

Jaatun, M. G., Cruzes, D. S., Bernsmed, K., Tøndel, I. A., & Røstad, L. (2015). Software Security Maturity in 
Public Organisations. Paper presented at the Information Security: 18th International Conference ISC 2015, 
Trondheim, Norway. Doi: doi:10.1007/978-3-319-23318-5_7

Knapp, T. R. (1990). Treating ordinal scales as interval scales: An attempt to resolve the controversy. Nursing 
Research, 39(2), 121–123. doi:10.1097/00006199-199003000-00019 PMID:2315066

McGraw, G. (2004). Software Security. IEEE Security and Privacy, 2(2), 80–83. doi:10.1109/MSECP.2004.1281254

McGraw, G. (2005). The 7 Touchpoints of Secure Software. Dr.Dobb’s Journal.

McGraw, G. (2006). Software Security: Building Security. Addison-Wesley Professional.

McGraw, G., Migues, S., & West, J. (2016). Building Security In Maturity Model (BSIMM 7).

Microsoft. (2012). Security Development Lifecycle for Agile Development. Retrieved from https://msdn.
microsoft.com/en-us/library/windows/desktop/ee790621.aspx

OWASP. (2006). CLASP concepts. Retrieved from https://www.owasp.org/index.php/CLASP_Concepts

OWASP. (2016). Software Assurance Maturity Model. Retrieved from http://www.opensamm.org/

Oyetoyan, T. D., Cruzes, D. S., & Jaatun, M. G. (2016). An Empirical Study on the Relationship between Software 
Security Skills, Usage and Training Needs in Agile Settings. Paper presented at the 2016 11th International 
Conference on Availability, Reliability and Security (ARES). doi:10.1109/ARES.2016.103

Payment Card Industry. (2016). Payment Card Industry (PCI) Data Security Standard - Requirements and Security 
Assessment Procedures: PCI DSS v3.2.

Robinson, H., & Sharp, H. (2004, June 6-10). Extreme Programming and Agile Processes in Software 
Engineering. Proceedings of the 5th International Conference, XP 2004, Garmisch-Partenkirchen, Germany. 
Doi: doi:10.1007/978-3-540-24853-8_16

Rosenberg, D., & Stephens, M. (2003). Extreme programming refactored: the case against XP. Apress.

Wäyrynen, J., Bodén, M., & Boström, G. (2004). Security engineering and eXtreme programming: An impossible 
marriage? Extreme programming and agile methods-XP/Agile Universe 2004 (pp. 117–128). Springer. 
doi:10.1007/978-3-540-27777-4_12

Zhu, J., Lipford, H. R., & Chu, B. (2013). Interactive support for secure programming education. Paper presented 
at the 44th ACM technical symposium on Computer science education. doi:10.1145/2445196.2445396

ENDNOTES

1 	 https://www.r-project.org/
2 	 https://samate.nist.gov/SARD/testsuite.php



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

24

APPENDIX A– SURVEY INSTRUMENT

Figure 9. Section A: General Information



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

25

Figure 10. Section B: Capability & Interest



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

26

Figure 11. Section C: Training



International Journal of Secure Software Engineering
Volume 8 • Issue 1 • January-March 2017

27

Tosin Daniel Oyetoyan is a post-doctoral fellow at SINTEF. He received his PhD from NTNU in 2015. He has 
previously worked as a senior software developer and analyst in the banking sector and has developed solutions for 
both healthcare and automation systems. His research interests are in software security, agile software development, 
software quality and maintenance, software design, code analysis, software testing, software refactoring, software 
metrics, and empirical software engineering. He is a certified secure software lifecycle professional (CSSLP) and 
a member of IEEE.

Martin Gilje Jaatun is a Senior Scientist at SINTEF. He graduated from the Norwegian Institute of Technology (NTH) 
in 1992, and received the Dr. Philos degree in critical infrastructure security from the University of Stavanger in 
2015. Previous positions include scientist at the Norwegian Defence Research Establishment (FFI), and Senior 
Lecturer in information security at the Bodø Graduate School of Business. His research interests include software 
security, security in cloud computing and security of critical information infrastructures. He is vice chairman of the 
Cloud Computing Association (cloudcom.org), president of Cloud Security Alliance Norway, and a Senior Member 
of the IEEE.

Daniela S. Cruzes is a research scientist at SINTEF. Previously, she was adjunct associate professor at the 
Norwegian University of Science and Technology (NTNU). She worked as a researcher fellow at the University 
of Maryland and Fraunhofer Center for Experimental Software Engineering-Maryland. Dr. Cruzes is the project 
manager of the SoS-Agile (Science of Security for Agile Software Development) project funded by the Research 
Council of Norway. Her interests are agile software development, software security, global software engineering, 
empirical research methods, theory development and synthesis of software engineering studies.




