
I’ll Trust You – For Now

Martin Gilje Jaatun
Department of Software Engineering, Safety and Security, SINTEF ICT, Trondheim, Norway

Martin.G.Jaatun@sintef.no

Keywords: Cloud, Security, Privacy, Trust

Abstract: The pervasiveness of cloud computing paired with big data analytics is fueling privacy fears among the more
paranoid users. Cryptography-based solutions such as fully homomorphic encryption and secure multiparty
computation are trying to address these fears, but still do not seem to be ready for prime time. This pa-
per presents an alternative approach using encrypted cloud storage by one provider, supplemented by cloud
processing of cleartext data on one or more different cloud providers.

1 INTRODUCTION

Cloud computing is everywhere, and more and more
users are putting their data into the cloud, often with-
out knowing it (Rong et al., 2013). With all this
data in the hands of one of the big cloud providers,
the emergence of big data analytics (Jaatun et al.,
2014) are raising new privacy fears among the more
concerned members of the public. According to
the privacy paradox, even users who claim to be
privacy-conscious frequently behave in a counter-
privacy manner (Jaatun et al., 2012a), but there will
still be a certain number of users who are paranoid
enough to demand a better way.

If we assume the threat model of an honest-but-
curious cloud provider (Jaatun et al., 2012b), we have
to expect that the provider will index the information
we store, and may use this information for various
purposes, such as targeted marketing (Vivian, 2015).
How can we keep using the cloud without surrender-
ing to privacy invasion? This paper will present a
scheme that addresses this challenge.

The remainder of this paper is organized as fol-
lows: Section 2 presents relevant background infor-
mation. The scheme is presented in Section 3, and
discussed in Section 4. Section 5 concludes the paper
and outlines further work.

2 BACKGROUND

The literature documents numerous approaches to
deal with honest-but-curious providers. Fully homo-
morphic encryption (Gentry, 2009) allows performing

computations on encrypted data, in such a manner that
the result is the same as the encrypted version of the
result from the same operation performed on the cor-
responding unencrypted input. The main drawback of
fully homomorphic encryption has thus far been that
it is too processor intensive.

Another variant is Secure Multiparty Computa-
tion (Bogetoft et al., 2009; Bogdanov et al., 2008),
where multiple providers are involved in the compu-
tation of a result, but no one provider has access to
cleartext data. A trivial example of SMC is a scheme
to calculate the average salary of Alice, Bob, Charlie
and Debbie. Alice takes her salary, and adds a ran-
dom number R to it. She then sends the result to Bob,
who adds his salary, and sends the result to Charlie.
Charlie add his salary and sends the result to Debbie,
who adds here salary and sends the result back to Al-
ice. Alice then subtracts R, and gets the average salary
by dividing by four, but none of the four participants
have learned the value of anybody else’s salary.

Splitting data and dispersing it among multiple
providers is an approach that has been used in sev-
eral contexts (Storer et al., 2009; Adya et al., 2002;
Rhea et al., 2003; Jaatun et al., 2012b), where the idea
is that no single provider has enough information to
make sense of it. The technique has seen application
in some special cases, but seems too complicated for
widespread use.

Trusted cloud computing (Santos et al., 2009) is
another approach where trusted computing principles
based on a Trusted Platform Module (TPM) on the
physical cloud servers are used to ensure that the
provider ”stays honest”, also to the extent of denying
the provider access to cleartext data within users’ vir-

Published in Proceedings of the International Conference on Internet of 
Things and Big Data 2016, ISBN: 978-989-758-183-0, pages 399-402 
https://doi.org/10.5220/0005953903990402



tual machines. However, the caveat of this approach
is that it moved the single point of trust from the
provider to the hardware chip manufacturer, which
the PRISM revelations indicate is not necessarily any
better.

A totally different approach is using accountabil-
ity (Pearson, 2011; Pearson and Charlesworth, 2009;
Jaatun et al., 2014) to entice the provider to do the
right thing, making it a business advantage to offer
accountable service. The main disadvantage with this
approach is that it depends on the cooperation of the
provider.

3 SCHEME DESCRIPTION

The proposed scheme is inspired by RAIN (Jaatun
et al., 2012b), but is much simpler.

First, choose any reputable cloud provider of-
fering cloud storage, putting highest emphasis on
availability of your information. We will call this
“Provider A”. Choose a symmetric key k of appropri-
ate key length1. Select which files are to be uploaded,
and encrypt these using key k. Upload the encrypted
files to A.

Encrypted cloud storage is of course not novel,
and the next step is therefore essential. A second
cloud provider (“Provider B”) which offers cloud pro-
cessing services is chosen. The simplest case would
be a Software-as-a-Service (SaaS) document editing
application. When documents are to be transferred to
provider B, they are decrypted using key k and placed
in (temporary) storage associated with provider B’s
editing application. The plaintext version of the file
can then be viewed (and if desired edited).

If the file has been changed, it must be re-
encrypted before being transferred back to provider
A. After the user is finished interacting with the file,
it is deleted from provider B. The scheme is illustrated
in Figure 1.

3.1 Custom VM image

The main flaw with the scheme described thus far is that
commodity SaaS applications do not incorporate a decryp-
tion function. This would seem to require the user to first
download the encrypted file from provider A, decrypt it lo-
cally, and then upload the plaintext version to provider B.
However, this would pretty much invalidate the whole point
of a cloud solution, in addition to requiring lots of unnec-
essary file transfers to the edge network (which presumably
has lower capacity and higher costs).

1Minimum key lengths (Dent, 2010) keep growing as
processing power of commodity computers keeps increas-
ing. Current conventional wisdom is that a 128 bit AES key
offers sufficient protection, but your mileage may vary.

!%!I©ÊQL¡�
âa�¶ÁÂ±#Û
Tðï;³†Ð¨iKyªj

kµÇÌÎáÙo-
5pÐ�¬� 

A The quick 
brown fox 
jumps over 
the lazy dog B 

Ek(P) 

Dk(Z) 

Ek(P') 

Figure 1: Scheme illustration

A solution to this problem could be to create a cus-
tom Virtual Machine (VM) image, complete with decryp-
tion software and information viewing/processing/modifi-
cation software. A practical choice would be an OpenStack
(TaheriMonfared and Jaatun, 2012) Linux image with (e.g.)
OpenOffice2 as document editing software. The encryp-
tion/decryption software must be custom built, based on
proven cryptographic components3.

When a file from provider A needs to be accessed, a
custom VM at provider B is launched, and the encrypted
file is transferred to the VM instance. At the same time,
the user securely transfers the required decryption key k to
the VM instance. The encrypted file is then decrypted, and
further processed by the utilities that are already provided
in the VM image.

For the highest level of security, the VM instance can be
destroyed right after use, but could for convenience also be
kept running. In the latter case, the mechanism presented in
the next subsection comes into relevance.

3.2 Chaff

Many years ago, Rivest (Rivest, 1998) proposed chaffing
(padding sensitive information with irrelevant nonsense) as
an approach to improved confidentiality, in his case without
using cryptography due to the then draconian export restric-
tions on cryptographic hardware and software from the US.

Chaffing can be used as an alternative to deleting files
from provider B after use, or possibly in addition to it. In
the simplest case, the user could make irrelevant changes to
the plaintext after an updated document has been returned
to encrypted to provider A, and then delete it. This could
also be done in the case the document has not been edited,
thus keeping Provider B in the dark regarding which edits
are real, and which are not. To make this deception com-
plete, it would be necessary to also make a dummy transfer
of an encrypted file as well. If, on the other hand, the doc-
ument is not deleted, a process could periodically add ran-
dom garbage from various sources to the document, further

2http://www.openoffice.org
3E.g., AES. Under no circumstances should you ever

consider creating a new cryptographic algorithm (Ferguson
and Schneier, 2003)



obscuring or even replacing the original content, such that
any indexing performed by provider B is worthless.

By employing yet another cloud service (provider C),
it would be possible to create a bot (Chu et al., 2010) to
edit your chaff documents, further confusing the curious
provider B.

3.3 Improved key management

Relying on a single key to protect all documents is not satis-
factory in the long run, also because provider B necessarily
will have access to the key when decrypting files. A better
solution would be if the user is able to run a key manage-
ment application locally, and create session keys for each
file. For further security, each key should only be used for
encryption once; when a file is re-encrypted after modifica-
tion, it is assigned a new session key, which must be trans-
ferred securely back to the user.

A variant could be to introduce another cloud provider
to store the key management database, but this does of
course place a lot of trust on that provider, and may not
be acceptable to the most paranoid users.

4 DISCUSSION

The threat model of an honest-but-curious provider implies
that it should be sufficient to make it difficult enough for
a provider to aggregate the user’s information. This means
that we accept to trust the provider “for the moment”, but
make sure to remove any accessible information at the first
opportunity, and also muddy the waters by introducing chaff
in such a manner that the provider cannot discern it from
wheat.

The security of the scheme presented in this paper re-
lies on providers being less interested in IaaS data (“bag of
bits” (Jaatun et al., 2014)) than structured files (information)
at the SaaS level. It is true that Virtual Machine Introspec-
tion (VMI) techniques (More and Tapaswi, 2014) makes it
possible for a provider to eavesdrop on users’ VMs, but it is
debatable whether a provider by doing so crosses the bound-
ary between being an honest-but-curious provider and being
a dishonest provider.

This scheme is vulnerable to collusion between the dif-
ferent providers; in particular, if only “real” data is stored
by provider A, provider A would be able to inform provider
B which files are genuine, and which are chaff. Collusion
could be made more difficult by increasing the number of
cloud providers in use, e.g., introduce a set of providers
{A1,A2, . . . ,An} for storing encrypted data, and a different
set of providers {B1,B2, . . . ,Bm} to run the VMs that pro-
cess plaintext data. At a certain point, however, it will be
difficult for the user to manage all the different providers,
and an intelligent (non-cloud) client will be needed to use
the system.

Note that the sets of providers A and B should be dis-
joint, and could also be quite different; if provider B is cho-
sen to be “throwaway”, i.e., the VM is destroyed after each
use, reliability and availability of any given provider is less
of an issue. If a given provider Bi is unavailable, the user
can simply conjure up a new provider Bi+1.

The expanded scheme is illustrated in Figure 2.

5 CONCLUSION AND FURTHER
WORK

It is important to acknowledge that just because you are
paranoid, that does not mean that they are not out to get
you (Heller, 1961). Like many security solutions, the one
presented in this paper may seem cumbersome and possibly
unnecessary, but it could still be useful for some users in the
right circumstances.

The next phase of this project is to implement a demon-
strator for field testing, and perform a formal security anal-
ysis of the resulting system.

Acknowledgment

The research reported in this paper has been supported in
part by the European Commission through the EU FP7
project A4Cloud, grant nr. 317550.



!%!I©ÊQL¡â
a¶ÁÂ±#ÛTðï
;³†Ð¨iKyªjkµ
ÇÌÎáÙo5pÐ¬ A1 B1 

EKn(P) 

DKn(Z) 

EKn+1(P') 

C 

Chaff 

Kn, Kn+1 

Key A,B, 

The quick 
brown fox 

jumps 
over the 
lazy dog 

VM 

Figure 2: Expanded scheme

REFERENCES

Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken,
R., Douceur, J. R., Jon, Howell, J., Lorch, J. R.,
Theimer, M., and Wattenhofer, R. P. (2002). FAR-
SITE: Federated, Available, and Reliable Storage for
an Incompletely Trusted Environment. In In Proceed-
ings of the 5th Symposium on Operating Systems De-
sign and Implementation (OSDI, pages 1–14.

Bogdanov, D., Laur, S., and Willemson, J. (2008).
Sharemind: a framework for fast privacy-preserving
computations. Cryptology ePrint Archive, Report
2008/289. http://eprint.iacr.org/.

Bogetoft, P., Christensen, D., Damgård, I., Geisler, M.,
Jakobsen, T., Krøigaard, M., Nielsen, J., Nielsen, J.,
Nielsen, K., Pagter, J., Schwartzbach, M., and Toft, T.
(2009). Secure multiparty computation goes live. In
Dingledine, R. and Golle, P., editors, Financial Cryp-
tography and Data Security, volume 5628 of Lecture
Notes in Computer Science, pages 325–343. Springer
Berlin / Heidelberg. 10.1007/978-3-642-03549-4 20.

Chu, Z., Gianvecchio, S., Wang, H., and Jajodia, S. (2010).
Who is tweeting on twitter: Human, bot, or cyborg?
In Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 21–30,
New York, NY, USA. ACM.

Dent, A. W. (2010). Choosing key sizes for cryptography.
Inf. Secur. Tech. Rep., 15(1):21–27.

Ferguson, N. and Schneier, B. (2003). Practical Cryptogra-
phy. John Wiley & Sons, Inc., New York, NY, USA,
1 edition.

Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of computing, pages 169–178.
ACM.

Heller, J. (1961). Catch-22. Simon & Schuster.
Jaatun, M. G., Nyre, Å. A., Tøndel, I. A., and Bernsmed, K.

(2012a). Privacy Enhancing Technologies for Infor-
mation Control. In Yee, G. M., editor, Privacy Pro-
tection Measures and Technologies in Business Orga-
nizations: Aspects and Standards.

Jaatun, M. G., Pearson, S., Gittler, F., and Leenes, R.
(2014). Towards strong accountability for cloud ser-
vice providers. In Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th International
Conference on, pages 1001–1006.

Jaatun, M. G., Zhao, G., Vasilakos, A., Nyre, Å. A., Alap-
nes, S., and Tang, Y. (2012b). The design of a
redundant array of independent net-storages for im-
proved confidentiality in cloud computing. Journal of
Cloud Computing: Advances, Systems and Applica-
tions, 1(1):13.

More, A. and Tapaswi, S. (2014). Virtual machine intro-
spection: towards bridging the semantic gap. Journal
of Cloud Computing, 3(1).

Pearson, S. (2011). Toward accountability in the cloud. In-
ternet Computing, IEEE, 15(4):64–69.

Pearson, S. and Charlesworth, A. (2009). Accountability as
a way forward for privacy protection in the cloud. In
Cloud Computing, pages 131–144.

Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B.,
and Kubiatowicz, J. (2003). Pond: the OceanStore
Prototype. In Proceedings of the 2nd USENIX Con-
ference on File and Storage Technologies (FAST ’03).

Rivest, R. L. (1998). Chaffing and winnowing: Confiden-
tiality without encryption. CryptoBytes (RSA labora-
tories), 4(1):12–17.

Rong, C., Nguyen, S. T., and Jaatun, M. G. (2013). Be-
yond lightning: A survey on security challenges in



cloud computing. Computers & Electrical Engineer-
ing, 39(1).

Santos, N., Gummadi, K. P., and Rodrigues, R. (2009).
Towards trusted cloud computing. In HOTCLOUD.
USENIX.

Storer, M. W., Greenan, K. M., Miller, E. L., and Voruganti,
K. (2009). Potshards a secure, recoverable, long-term
archival storage system. Trans. Storage, 5:5:1–5:35.

TaheriMonfared, A. and Jaatun, M. G. (2012). Handling
compromised components in an IaaS cloud installa-
tion. Journal of Cloud Computing, 1(1).

Vivian (2015). Ads in gmail. https://support.google.
com/mail/answer/6603?hl=en.




