
An Empirical Study on the Relationship between
Software Security Skills, Usage and Training needs

in Agile Settings

Tosin Daniel Oyetoyan, Daniela Soares Cruzes, Martin Gilje Jaatun
Department of Software Engineering, Safety & Security

SINTEF ICT
Trondheim, Norway

{tosin.oyetoyan,daniela.s.cruzes,martin.g.jaatun}@sintef.no

Abstract—Organizations recognize that protecting their assets
against attacks is an important business. However, achieving
what is adequate security requires taking bold steps to address
security practices within the organization. In the Agile software
development world, security engineering process is unacceptable
as it runs counter to the agile values. Agile teams have thus
approached software security activities in their own way. To
improve security within agile settings requires that management
understands the current practices of software security activities
within their agile teams.

In this study, we use survey to investigate software security
usage, competence, and training needs in two agile organizations.

We find that (1) The two organizations perform differently
in core software security activities but are similar when activities
that could be leveraged for security are considered (2) regardless
of cost or benefit, skill drives the kind of activities that are
performed (3) Secure design is expressed as the most important
training need by all groups in both organizations (4) Effective
software security adoption in agile setting is not automatic, it
requires a driver.

Keywords—Agile software development, Software security, Soft-
ware security activities, Empirical study

I. INTRODUCTION

Protecting the organization’s assets from security threats
is vital. Security is not an add-on functionality or product
feature [21], and it is thus important that security is “built-
in” in the process and the product. However, traditional se-
curity engineering process is often associated with additional
development efforts and often invokes resentment among agile
development teams [12], [10].

Some approaches have been proposed to integrate security
activities into agile development, e.g. [23]. However, these ap-
proaches have been criticised to look similar to the traditional
versions in terms of workload (e.g. performing a long list of
security verification and validation tasks) [10]. As a result,
’agile’ organizations have approached software security in a
way that fits their process and practices. Statistics show that
more than 70% of reported vulnerabilities are in the application
layer [18] and not the network. Thus, regardless of whether
agile is incompatible with secure software development, the
major discussion we should have is how to improve security
within the agile context [8].

Previous studies [7], [5] have investigated which security
activities are practiced in different organizations, and which
are compatible with agile practices from cost and benefit
perspectives. Using a survey of software security activities
among software practitioners, they identify and recommend
certain security activities that are compatible with agile prac-
tices such as; security requirements, role matrix, risk analysis,
secure design principles, countermeasure graphs, coding rules,
security tools, penetration testing, and operational planning and
readiness.

While these activities could be argued to be beneficial and
cost effective to integrate, there are still gaps between what
is “adequate” security [2], and what is currently practiced
within several organizations. According to Allen [2], Adequate
security is defined as ”The condition where the protection and
sustainability strategies for an organization’s critical assets
and business processes are commensurate with the organiza-
tion’s tolerance for risk”. This study is motivated based on
the perceived gaps in software security by the management in
the collaborated organizations. To address these gaps requires
management to first understand the current status of software
security practices and capability within their organization.

This study investigates existing practice, skills, and training
needs within agile teams. We want to know the training
needs and understand the relationships between skills and
usage of security activities among teams and across roles. The
findings are important to guide management decisions towards
improving security within their organization.

The Building Security In Maturity Model (BSIMM) [22]
has also being used to measure security practices in different
organizations. Jaatun et al. [19] used a questionnaire based
on the BSIMM activities to measure the security maturity
of Norwegian public organizations. They found that there is
a need for improvements in metrics, penetration testing and
training developers in secure development. BSIMM is useful
for measuring the software security maturity of an organi-
zation and helping them formulate overall security strategy
[22]. However, it is heavyweight as a measurement tool to
directly measure developers skill or usage of software security
activities within a development team. Therefore, together with
the two organizations under study, we have jointly developed a
lightweight instrument consisting of software security activities
from OWASP CLASP, Microsoft SDL and Touchpoints [14]

Author version. Presented at 2016 11th International Conference on Availability, Reliability and Security (ARES)
Official version available at https://doi.org/10.1109/ARES.2016.103
Expanded journal version available at https://jaatun.no/papers/2017/lightweight-measurement-swsec.pdf

TABLE II. DEMOGRAPHY OF ORGANIZATIONS

Org-1 Org-2
Dominant Agile Process Scrum (77%) Scrum (83%)

Industry Telecom Transport
Team setup Co-located/Distributed Distributed

Have Security Professionals Yes No
No.of Respondents 56 36

for this purpose.

The rest of this paper is organised as follows: We describe
the background in Section II. We describe our case study
context and study design in Section III. We present and discuss
the results in Section IV. Finally we conclude in Section V.

II. BACKGROUND

A. Software Security Activities

We have drafted an instrument with questions on different
software security activities (asterisked activities in Table I)
from OWASP CLASP, Microsoft SDL for Agile, Common
Criteria, and Cigital Touchpoints that have been used in pre-
vious studies [5], [7] (see Table I). The table also includes the
additional activities ”pair programming” and ”countermeasure
graph” considered in these studies; both are common security
activities used in agile settings, e.g., when security experts
rotate through programming pairs [8], [26].

The instrument has been jointly reviewed by a security
professional, a security champion and a project manager in the
two organizations. The activities are classified differently than
in the traditional software development lifecycle (SDLC), but
they do however fit into each development lifecycle. The ratio-
nale is to invoke a different way of perceiving these activities
than from a traditional viewpoint. For instance, whereas secure
design involves many activities from “Threat modeling and
risk management”, we can argue that software designers could
make assumptions about secure design when they include,
e.g., authentication mechanisms [4]. However, performing a
comprehensive threat analysis could reveal an insecure design,
e.g., a possibility to bypass an authentication mechanism by
directly navigating to an obscure webpage or resource. This
could make it possible to spot such assumptions. Similarly,
we have considered software security tools separately in order
to identify strong and weak areas of usage and skills. Findings
from the survey can trigger further questions, e.g., why certain
implemented tools are not used within the organization and
could lead to useful actions. These activities are divided into:
Inception, threat modeling and risk management, secure design
and coding, security tools, security testing, and release. Table II
shows the software security activities. In addition, we provide
a short explanation of each term we have used in the survey
for the respondents.

III. STUDY DESIGN

A. Case study context

This study is carried out in 2 organizations(in the follow-
ing referred to as “Org-1” and “Org-2”), that do business
in telecommunication and transportation, respectively. Both
organizations use agile practices (mostly Scrum and a mix
of other agile flavors, e.g. XP) for their software development

TABLE III. SOFTWARE SECURITY ACTIVITIES IN THE SURVEY

Inception Secure design & coding
Having a project security officer Secure design (attack surface reduction,

secure defaults)
Establishing security requirements Secure coding (secure guidelines)
Writing abuse stories/cases Pair programming
Addressing security logistics (e.g. creat-
ing relevant security fields)

Static code analysis

Security tools
Threat modelling tool

Threat Modeling & Risk Manage-
ment

Dynamic code analysis tool

Threat Modeling Static code analysis tool
Attack surface analysis Code review tool
Countermeasure techniques Security testing
Assets analysis Vulnerability assessment
Risk analysis Penetration testing
Role matrix identification Red team testing
Release Fuzz testing
Incident response management Dynamic testing

Risk-based testing
Security code review

(see Table IV). The team set-up for the telecom company is co-
located and Distributed. Some of the teams are situated in the
same location, while some are distributed in different locations
and continents. The organization has about 90 engineers.
In addition, the telecom company has information security
professional group, as they need to comply with various
standards (e.g., PCI DSS compliance). The security group also
coordinates security audit reports and follow up on reported
security issues.

The transportation software company is a small/medium
software organization with about 50 developers distributed
in three different countries. One security officer is officially
designated to work on the security procedures and make the
security work systematic.

B. Survey questions and hypotheses

We designed both an online questionnaire and a paper-
based version. We refined the instrument by running a test on
our industrial contacts, an independent architect and a post-
doctoral fellow in software engineering. The target response
time was 10-12 minutes. For the most part, the questionnaire
was manually administered to the development teams on site.
This increased the response rate, and provided the opportunity
to clarify questions that respondents might have.

1) Survey questions: The goal of the survey is to under-
stand the state-of-practice, skill level and training needs of the
agile teams regarding software security activities. As a result,
we asked the following questions for the software activities
listed in Table II:

Regarding skill levels among the developers, we use a
5-point Likert scale where 1=Novice, 2=Basic, 3=Average,
4=High, and 5=Expert. To avoid misunderstanding the scale
values, we have provided a description for each value on the
scale (see Table III for the description of each scale on how
to choose skill level).

Q1 What is your skill level in this activity or tool?

TABLE I. SOFTWARE SECURITY ACTIVITIES FROM OWASP CLASP, MICROSFT SDL, CIGITAL TOUCHPOINTS (CT) AND COMMON CRITERIA (CC)

Initial Requirement Design Implementation Testing Release
Education (CLASP, SDL) Security Requirements (CLASP, SDL, CT, CC)* Risk Analysis (CT, CC)* Security Tools (SDL)* Dynamic Analysis (SDL)* Incident Response Planning (SDL)*
Security Metrics (CLASP) Quality Gates (SDL)* Threat Modelling (CLASP, SDL) Static Code Analysis (SDL, CT)* Fuzz Testing (SDL)* Final Security Review (SDL)

Design Requirements (SDL) Attack Surface Analysis (SDL)* Pair programming (O)* Penetration Testing (CT)* External Review (CT)
Abuse cases (CLASP, CT)* Assumption Documentation (CT) Coding Rules (SDL)* Red Team Testing (CT)* Code Signing (CLASP)
Repository Improvement (CC) Critical Asset Analysis (CC) Risk Based Testing (CT)* Database Security Configuration (CLASP)

UMLSec (CC) Security Code Review (CLASP, SDL)*
Requirements Inspection (CC) Security Testing (CLASP)
Countermeasure Graph (O)*
Cost Analysis (SDL)
Security Architecture (CLASP)
Secure Design Principles (CLASP)*
Identify Trust Boundary (CLASP)

TABLE IV. SCALE FOR SKILL LEVEL

Novice [1] Basic [2] Moderate [3] High [4] Expert [5]
Have no experience working in this area You have the level of experience gained

in a classroom and/or experimental sce-
narios or as a trainee on-the-job. You are
expected to need help when performing
in this area

You are able to successfully complete
tasks in this area as requested. Help
from an expert may be required from
time to time, but you can usually per-
form the skill independently

You can perform the actions associated
in this area without assistance. You are
certainly recognized within your imme-
diate organization as “a person to ask”
when difficult questions arise regarding
this area

You are known as an expert in this area.
You can provide guidance, troubleshoot
and answer questions related to this area
of expertise and the field where the skill
is used

Regarding current usage, we ask a Yes/No question:

Q2 Do you currently use this activity or tool?

About training needs, we equally use a Yes/No question:

Q3 Do you want to have training in this activity or
tool?

We are also interested to investigate the teams’ software
security experience directly and how long they have been
involved with software development. To achieve this, we ask
two additional questions:

Q4 Do you have security experience?
This is a Yes/No question - Nominal variable

Q5 Number of years with software development.
This is an interval variable

C. Investigations and Hypotheses

Undertanding the similarities and differences between or-
ganizations could help during replications and adoptions of
software security activities and programs across different or-
ganizations. We identify four activities that are common to
the two agile organizations. Use of code review tool, static
code analysis, use of static code analysis tool, and pair
programming. Pair programming is a major activity in Agile
software development and by extension code review.

We make a distinction here; (1) Core security activities
and (2) Activities that can be leveraged to deliver security.
The above four activities are classified under (2), but it is
another question whether they are leveraged to tackle security,
as we can argue that these activities can be used without
focusing them strictly on security. For instance, a team may use
static code analysis for checking code quality, conformance to
style standard, detecting code complexities, and code smells.
These do not translate directly to security defects. We can of
course make another line of argument that every defect has a
level of security risk, however, not every defect is security
related. Secure coding standards and focused security test
suites such as the NIST SARD1 project are specific for security
defects. Pair programming and use of a code review tool may
be focused on catching only “conventional” defects (and not

1https://samate.nist.gov/SARD/testsuite.php

security defects). We take this background into consideration
in our analysis and discussion. We grouped the four activities
and named them “Frequently Used Activities” (FUA). This
category name, FUA, is used to differentiate between both
categories in the analysis.

1) Investigation about similarities and differences between
the organizations: Our assumption is that developers have
relatively similar skills in software security regardless of the
organization where they currently work. We also assume that
agile organizations have different usage patterns with software
security activities. An agile team is mostly autonomous and
self confident [24], and thus makes decisions that the team
members think best contribute to customer satisfaction and
product quality. Since activities are chosen in a voluntary
manner in agile settings, we think that organizations would
use activities that best fit their process and business needs.
Therefore, we investigate whether the skills, usage and training
needs in software security activities in both organizations are
similar or different.

2) Hypotheses: We assume based on conventional wis-
dom that using an activity requires certain level of know-
how. Therefore, teams would use activities where they have
competence.

H1 Skill level is positively related to usage of security
activities

We also assume that experienced developers would most
probably have taken security related decisions during their
development career, and thus have knowledge and experience
in software security.

H2 Years of development experience is positively
related to security experience

D. Method of Analysis

Our unit of analysis is based on role within the agile
team. These roles are developers, architects and testers. To
analyse the relationship between skill (Q1) and usage (Q2), we
use correlation analysis to find the relationship between both
variables. In the case of Q1, which is an ordinal variable, we
use the mean value [20] as an interval variable to statistically
compare the skill levels between the organizations. In addition,

we take the proportion (ratio) of skill level between “moderate”
and “expert” and compare among roles in the organizations.

To find the correlation between security experience (Q4)
- nominal variable (Yes/No) and years of development (Q5)
- interval variable, we group the interval variable (Q5) into
ranges (e.g., 0-5, 6-10, >10). For each group, we count and
record the number of “yes” and “no” for Q4. We then find
the ratio of “yes” and “no” for each category. Finally, we
used Pearson correlation to find the relationship between the
computed ratios. A significant negative correlation implies that
the higher the number of years with software development
among respondents in the group, the lesser the number with
no experience with security.

Finally, we use a ratio scale for the usage (Q2) and training
needs (Q3) for the various software activities among teams
and roles. For similarity analysis between organizations, we
use Pearson and Spearman correlation tests. We have used the
R statistical package2 for the analysis.

E. Assessment of reliability and validity

For this type of study, we are concerned about reliability,
content validity, and construct validity [15]. We ignore crite-
rion validity because we are not concerned about predictions
of any variable, rather we discuss external validity which is
related to generalization of the results in this study.

1) Reliability: Reliability concerns the degree to which
an instrument will produce the same result if it is adminis-
tered again. One major factor that could make the instrument
unreliable in our case is the respondent’s interpretation of
the software security activities. To avoid misunderstanding
and provide equal level of reasoning about the terms, we
have provided a description of the security activities for the
respondents.

2) Content validity: Content validity is concerned with how
adequately the items in the instrument represent the domain of
the concept being studied. The items on the instrument we have
used are drawn from established software security activities
[14] (e.g. OWASP CLASP, Microsoft SDL, and Touchpoints).
Thus content validity is built into the study from the beginning.

3) Construct validity: Construct validity is about whether
the instrument really measures what it claims to measure.
Determining the skill level (Q1) of a respondent on an activity
could lead to erroneous results. For instance, someone with
a basic skill level could over-estimate their own ability and
assume an average skill. To mitigate this threat, we have
used a scale (see Table III) with a description for each scale
category. Construct validity could also be an issue with Q4,
since we have not used any description to help the respondent
clarify his/her security experience. However, we think that
respondents that say “yes” to this question must have had to
take security related decisions during their job.

4) External validity: This study involves 2 small/medium
sized organizations that are different in the type of market
targets for their solutions. Both practiced agile development
and have their development teams co-located and distributed.
However, we cannot assume generalization of results across

2https://www.r-project.org/

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"

100"
Code"review"tool"

Sta8c"code"analysis"tool"
Sta8c"code"analysis"

Pair"programming"

Secure"coding"

Security"code"review"

Secure"design"

Penetra8on"tes8ng"

Incident"response"
management"

Dynamic"code"analysis"tool"

Role"matrix"iden8fica8on"
Vulnerability"assessment"

Countermeasure"techniques"
Wri8ng"abuse"stories/cases"

Risk"analysis"

Dynamic"tes8ng"

Fuzz"tes8ng"

Gathering"security"
requirements"

ARack"surface"analysis"

Threat"modeling"

Asset"analysis"

Red"team"tes8ng"

Threat"modeling"tool"
RiskUbased"tes8ng"

OrgU1"

OrgU2"

Fig. 1. % of developers with moderate - expert skill levels compared between
the 2 organisations

different organizations that use agile. There are other context
that could make the result different or similar. Examples are
the type of development model (e.g. outsourcing development
model) or the type of software or market targets. More
studies would be useful to see how correlated the different
organizations are to the ones we have studied.

IV. RESULTS & DISCUSSION

A. Results

We present the results of the survey and analysis conducted
among the two organizations.

1) Skill (Q1): Here we report the activities where the
majority (>= 50%) of respondents indicate to have moderate to
expert skills. Among the developers in ’Org-1’ (Figure 1), the
majority of respondents have moderate or higher skills in use
of code review tool, pair programming, secure coding, secure
design, and static code analysis. In the 2nd organization, ’Org-
2’ the situation is relatively similar. The activities/tools are
in the order: code review tool, pair programming, and static
code analysis. Among respondents who function as architects,
in Org-1, we found that in addition to the above activities
indicated by developers, a majority of the architects indicate
strong skill in security code review (73%). In Org-2, a majority
of architects in addition indicate to have skills in secure
coding, secure design, use of dynamic code analysis tool, and
countermeasure techniques.

A majority of the testers in Org-1 indicate to have skills in
code review, pair programming, secure design, security code
review, secure coding, static code analysis, and writing abuse
stories/cases; whereas the majority of testers in Org-2 indicate
skills in static code analysis, fuzz testing, use of code review
tool, dynamic testing, risk analysis, and risk-based testing.

2) Usage (Q2): We report activities where current usage
is 40% or more (see Figures 2, 3, and 4). Among developers
in Org-1, use of code review tool, static code analysis, pair
programming and secure coding (40.5%) are the most used
activities. Similarly, in Org-2, use of code review tool, static
code analysis (with or without tool), and pair programming
are the most used activities. 63.4% of developers in Org-1 and
48% of developers in Org-2 say they are confident (moderate
to expert skills) in writing secure code. This is slightly higher

TABLE V. CORRELATION ANALYSIS BETWEEN ORGANIZATIONS WRT SKILL, USAGE, AND TRAINING NEEDS GROUPED BY ROLES (95% CONFIDENCE
INTERVAL)

Developers Architects Testers
All-Activities - FUA All-Activities - FUA All-Activities - FUA

Skill 0.88* 0.68* 0.82* 0.76* 0.11 -0.084
Usage 0.86* 0.37 0.73* 0.26 0.52* 0.12

Training Needs 0.504* 0.678* 0.497* 0.453 0.064 0.186

TABLE VI. USAGE (AVERAGE %) OF SOFTWARE SECURITY ACTIVITIES GROUPED BY CATEGORIES

Developers Architects Testers
Org-1 Org-2 Org-1 Org-2 Org-1 Org-2

Frequently Used Activities 57 62 72 60 75 44
Secure Design & Coding 38 19 39 20 44 25

Threat Modeling & Risk Management 13 11 16 0 18 4
Security Testing 19 12 18 10 25 28

Requirements & Release 19 6 15 0 33 0

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"
100"

Code"review"tool"
Sta8c"code"analysis"tool"

Sta8c"code"analysis"

Pair"programming"

Secure"coding"

Security"code"review"

Secure"design"

Penetra8on"tes8ng"

Incident"response"management"

Dynamic"code"analysis"tool"

Role"matrix"iden8fica8on"

Vulnerability"assessment"
Countermeasure"techniques"

Wri8ng"abuse"stories/cases"

Risk"analysis"

Dynamic"tes8ng"

Fuzz"tes8ng"

Gathering"security"requirements"

ARack"surface"analysis"

Threat"modeling"

Asset"analysis"

Red"team"tes8ng"

Threat"modeling"tool"

RiskUbased"tes8ng"

OrgU1"

OrgU2"

Fig. 2. Comparison of usage level among developers between the 2
organisations

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"
Code"review"tool"

Sta8c"code"analysis"tool"

Pair"programming"

Sta8c"code"analysis"

Dynamic"code"analysis"tool"

Secure"coding"

Secure"design"

Security"code"review"

Fuzz"tes8ng"

Penetra8on"tes8ng"

Countermeasure"techniques"

Role"matrix"iden8fica8on"
Dynamic"tes8ng"

Gathering"security"requirements"

Incident"response"management"

Vulnerability"assessment"

Risk"analysis"

Asset"analysis"

APack"surface"analysis"

Red"team"tes8ng"

Wri8ng"abuse"stories/cases"

Threat"modeling"tool"

RiskUbased"tes8ng"

Threat"modeling"

OrgU1"

OrgU2"

Fig. 3. Comparison of usage level among architects between the 2 organi-
sations

when compared to research performed by Microsoft [1] where
only 36% of developers are confident to write secure software.
However, in terms of current practice in both organisations
under study, only 40.5% in Org-1 and 23.8% in Org-2 currently
indicate to engage in secure coding. This finding shows a gap
of roughly 60% in Org-1 and 76% in Org-2 among developers.

Among architects in Org-1, code review tool, static code

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"
Sta/c"code"analysis"

Code"review"tool"
Sta/c"code"analysis"tool"

Security"code"review"

Secure"coding"

Dynamic"code"analysis"tool"

Pair"programming"

Secure"design"

Countermeasure"techniques"

Role"matrix"iden/fica/on"

Gathering"security"requirements"

Incident"response"management"
Fuzz"tes/ng"Dynamic"tes/ng"

Risk"analysis"

Wri/ng"abuse"stories/cases"

Penetra/on"tes/ng"

Vulnerability"assessment"

Asset"analysis"

ARack"surface"analysis"

RiskTbased"tes/ng"

Threat"modeling"

Red"team"tes/ng"

Threat"modeling"tool"

Func/oning"as"project"security"
officer/champion"

OrgT1"

OrgT2"

Fig. 4. Comparison of usage level among testers between the 2 organisations

analysis, secure coding, countermeasure techniques, and pen-
etration testing are the most used activities. In Org-2, code
review tool, static code analysis/tool, pair programming, and
dynamic code analysis tool are the most used activities. Only
33.3% of architects in Org-1 and 20% in Org-2 indicate to
practice secure design. However, we found that architects
in Org-1 perform some activities in secure design processes
such as using countermeasure techniques (44%), role matrix
identification (33%), asset analysis (11%), and performing
attack surface analysis (11%). When compared to Org-2. We
found no usage of such secure design activities among the
architects.

At 40% usage threshold (see Figure 4), testers in Org-
1 use code review tool, static code analysis, secure coding,
dynamic code analysis tool, and security code review. While
testers in Org-2 use code review tool, static code analysis (with
or without tool), fuzz testing, dynamic testing, and risk-based
testing. We found that testers in Org-2 use testing approaches
(e.g. risk-based testing) that are more suitable during high level
testing such as integration or system testing.

3) Training Needs (Q3): In Org-1, secure design, secure
coding, penetration testing, and use of dynamic code analysis
tool are the top most activities where the 3 roles expressed
training needs. In Org-2, secure design is the top most training

need by the 3 groups. Secure coding and dynamic code
analysis tool are in the top 3 for developers. Dynamic testing
(Black box testing) and attack surface analysis are in the top
3 for architects and lastly, asset analysis and incident response
management are in the top 3 for testers.

B. Comparison among Organizations

Table V lists the results of the correlation tests that
compares the skill, usage and training needs between the 2
organizations.

a) Skills in software security activities: We found
strong statistically significant correlations or similarities in the
skill level indicated by the developers (0.88) and architects
(0.82) in both organizations. The correlation is lower when
we removed the four common activities used by both groups.
However, the competence areas indicated by testers differ in
both organizations, as evidenced by the weak correlation of
0.11. Testers in Org-2 indicate strong competencies in fuzz
testing, dynamic testing, risk analysis, and risk-based testing.
These are different from testers in Org-1 who indicate stronger
competencies in security code review and writing abuse stories.

To understand the result for the tester group, we further
investigated the team formation in each of the organization.
The distribution shows that 90% of testers in Org-1 are devel-
opers while only 40% of testers in Org-2 have a development
role. The majority of testers (60%) in Org-2 are therefore
independent testers who are not involved in coding. They
therefore are more disposed to testing approaches used during
high level testing such as risk-based testing. This could well
explain the reason for the dissimilarity among testers in both
organizations.

In a similar way, to explain the similarity among architects
in both organizations, we found that 91% of architects in Org-
1 are developers while all of the architects in Org-2 (100%)
are developers. It is thus safe to conclude that developers are
relatively similar in their skill levels across both organizations.

b) Usage of software security activities: The usage
correlation results show that developers and architects are
similar when we take code review tool, pair programming,
and static code analysis/tool into consideration. However, when
those are taken out, the correlation is very weak and not
significant. Among the core security activities such as threat
modeling, security testing, secure design and coding, the two
organizations differ in the level of usage. The frequently used
activities can be viewed as a platform that can be leveraged for
secure software development. However, they do not necessarily
have to be used for it.

The result among developers and architects indicates that
Org-1 performs more core security activities than Org-2 (Table
VI). For instance, Org-1 does secure design and coding twice
as much as Org-2. 16 % of the architects in Org-1 perform
threat modeling, whereas none of the architects performs
this activity in Org-2. The situation is the same for the
remaining activities, security testing, requirements and release.
The exception is in security testing and among testers, where
Org-2 performs higher than Org-1. The obvious reason is
that testers in Org-2 perform risk-based testing predominantly
(50% usage), because the testing team is independent of the
development team.

TABLE VII. CORRELATION BETWEEN SKILL AND USAGE OF
SOFTWARE SECURITY ACTIVITIES - H3

Skill vs. Usage (Q1 vs. Q2)

Pearson Correlation P-value
Org-1 0.93 6.002e-11
Org-2 0.91 1.808e-10

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"

1.00" 1.50" 2.00" 2.50" 3.00" 3.50" 4.00"

%
"U
sa
ge
"o
f"S

ec
ur
ity

"A
c2
vi
2e

s"

Skill"Level"

Org81"

Fig. 5. Skill vs. Usage of Software Security Activities in Org-1

We interacted with the security director in Org-1. One
reason for higher usage in Org-1 could be attributed to the pres-
ence of the security expert group in Org-1, although it does not
appear that the security group influences the choice of software
security activities that are performed by the teams. The agile
teams are very independent, innovative, and make their own
decisions. Nevertheless, the level of awareness about security
is higher in Org-1. According to the security professional we
talked to in Org-1, this awareness among teams is due to tech
talks, demos and other community building activities that have
allowed the teams to learn from each other, and to develop
ideas and ways of doing things across the development teams.

The similarities and differences in usages among architects
and testers in both organizations share the same explanations
in a) above. Most of the architects in both organizations have
a development role. While this also holds for testers in Org-1,
it is different for Org-2.

c) Training needs: The strongest statistically significant
correlation with respect to training needs is found in the devel-
oper group (0.68). The similarity between the training needs
for the architect group is weak (0.45). There is no similarity in
the training needs among testers in both organizations. There
are some similarities in the expressed training needs among
developers irrespective of the organization. For instance, secure
design, secure coding and dynamic code analysis are areas of
common training needs for teams in both organizations.

C. Results of Hypotheses

1) Skill vs. Usage (H1): Correlation analysis between
indicated skill levels and usage of activities show that skill
drives usage of activities. In both organizations, the correlation
result is very high at more than 0.9 and statistically significant
at 95% confidence interval. Regardless of the cost of activity,
we found that teams do well in activities where they indicate
high level of skills (see Table VIII and Figures 5 & 6). The
studies by Baca & Carlsson [7] and Ayaew et al. [5] report
code review to be detrimental in cost and benefit and pair
programming to have marginal benefit and detrimental in cost
to agile. However, our findings reveal that code review and

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"

1.00" 1.50" 2.00" 2.50" 3.00" 3.50"

%
"U
sa
ge
"o
f"S

ec
ur
ity

"A
c2
vi
2e

s"

Skill"Level"

Org82"

Fig. 6. Skill vs. Usage of Software Security Activities in Org-2

pair programming are well practiced in both organizations and
are areas where respondents indicate high skill levels.

Pair programming is an important practice in eXtreme
Programming (XP) and by itself includes the art of code review
[9]. In addition, peer code review is claimed to catch about
60% of the defects [13]. These could explain the reasons
both organizations have adopted these practices. The work
of Dybå et al. [17] that investigated the factors affecting
software developer acceptance and utilization of Electronic
Process Guides (EPG) corroborates this finding. Their results
suggest that software developers are mainly concerned about
the usefulness of the EPG regardless of whether it is easy to
use, how much support they receive, or how much they are
influenced by others.

On the other hand, we could hypothesize that management
can increase usage in certain software security activity if they
invest into increasing team’s skill in this area.

2) Years of development vs. security experience (H2):
Table VII lists the ratio of respondents with (Yes) and without
(No) security experience within each years of development
category. In both organization, more respondents with many
years of development experience indicate to have security
experience. Evidence from the analysis shows that most young
graduates have not had software security education and training
as the ”0-5” year range has the lowest proportion of respon-
dents with security experience in both organizations.

Zhu et al. [27] argued that only a small fraction of
developers are well trained in secure software development.
This is because most Computer Science (CS) and Software
Engineering (SE) curricula train students in programming and
application development but not secure software development.
As a result, CS and SE graduates are not trained on program-
ming techniques to reduce security bugs and vulnerabilities and
would unintentionally introduce avoidable security bugs in the
application. While this result is not surprising, we believe it
should be a call to integrate software security education in the
curriculum for the next generation of CS and SE graduates.

D. Implications

Although both organizations deliver solutions for critical
infrastructures, Org-1 has a higher level of security awareness
which is driven by the security expert group. This context
is important in order to understand why this organization’s
usage is higher than the other. We need to further investigate
the drivers for increase in software security adoption in an
organization, such as research efforts, government funding

TABLE VIII. YEARS OF DEVELOPMENT EXPERIENCE VS. SECURITY
EXPERIENCE (Q4 VS.Q5) - H4

Proportion
Org-1 Org-2

Years of development Yes No Yes No
0-5 0.2 0.8 0.00 1.00

6-10 0.5 0.5 0.17 0.83
>10 0.88 0.12 0.55 0.45

Pearson Correlation -1 -1
P-value <2.2e-16 <2.2e-16

and policies, education, and commitments by management to
security.

Furthermore, the results from this survey show gaps in
secure software development and opportunity for improve-
ment. Among the development team, secure coding is practiced
by less than half of the developers in both organizations.
Invariably, over 50% of the developers are not paying attention
to secure coding. The main question is whether this number
is an acceptable risk for the management. Similarly, secure
design is practiced by less than 40% of architects in both
organizations. The high level of individual and team autonomy
in agile settings requires a careful balance with respect to
software security integration. While different approaches to
integrate software security into agile teams have been proposed
[10], [6], [8], there are still many challenges about how to
achieve it. The cost and benefit in terms of additional activity
such as in ben Othmane et al. [10] and additional security
personnels, as in Baca et al. [6] need to be acceptable to the
agile team and management.

An important result from this survey is that secure design
is the highest training need expressed by all roles in both
organizations. We believe that this is not accidental. The need
for secure design is corroborated in Arce et al. [4]. Critics
of agile software development have argued that the lack of
attention to design and achitectural issues is a serious limitation
of the agile approach [16], [25]. About 60% of defects in a
system is introduced during design [11], and fixing defects
after release is 100x costlier than fixing it during requirement
or design [13]. In terms of security defects in design, the
strongest statement comes from a group of software security
professionals [4]: While a system may always have implemen-
tation defects, we have found that the security of many systems
is breached due to design flaws. In agile development, the
lack of a complete overview of the system leaves room for
unidentified risks during design.

Clearly, there is a need for more practice-oriented research
efforts to find an acceptable approach that can help agile
organization move towards their ”adequate” level of security.
We argue that security loopholes could be created by any team
or individual within the organization with weak approaches to
security. There are two major points to ponder in this result
regarding software security adoption: 1) How can skill be
increased in specific software security areas relevant to the
development team and the goal of the organization? and 2)
How can we create an environment that make replication of
software security successes possible among teams? Creating
a learning environment is central to point 1. Although agile
development and learning are highly related [3], building a
learning environment for security is not that easy. Differences

in technologies and team autonomy are just few of the chal-
lenges to consider.

V. CONCLUSION

We have investigated the current usage, team competencies
and training needs in software security activities among two
agile organizations. We found that both organizations are
similar in using certain activities such as code review tool, pair
programming, and static code analysis/tool. These activities
may or may not be used specifically for security. In core
security activities such as threat modelling, secure design and
coding, the two organizations are different. One performs more
than the other due to a higher level of awareness created by the
security expert group. Furthermore, skill drives the usage of
activities. Secure design is consistently expressed by all roles
in both organizations as the top most area where there is a
need for training.

We identify learning and knowledge transfer as important
to increase software security usage among teams. However,
it requires that an enabling environment be built as software
security may not happen without a driver.

ACKNOWLEDGEMENTS

The work in this paper was supported by the Research
Council of Norway through the project SoS-Agile: Science
of Security in Agile Software Development (247678/O70).
We are grateful to our industrial partners and the survey
respondents.

REFERENCES

[1] Ed Adams. The biggest information security mistakes that organizations
make and how to avoid making them, 2012.

[2] Julia Allen. Governing for enterprise security. Technical report, DTIC
Document, 2005.

[3] Mauricio Finavaro Aniche and Guilherme de Azevedo Silveira. Increas-
ing learning in an agile environment: Lessons learned in an agile team.
In Agile Conference (AGILE), 2011, pages 289–295. IEEE, 2011.

[4] Iván Arce, Kathleen Clark-Fisher, Neil Daswani, Jim DelGrosso, Danny
Dhillon, Christoph Kern, Tadayoshi Kohno, Carl Landwehr, Gary
McGraw, Brook Schoenfield, Margo Seltzer, Diomidis Spinellis, Izar
Tarandach, and Jacob West. Avoiding the top 10 software security
design flaws. Technical report, IEEE Computer Societys Center for
Secure Design (CSD), 2014.

[5] Tigist Ayalew, Tigist Kidane, and Bengt Carlsson. Identification and
evaluation of security activities in agile projects. In Secure IT Systems,
pages 139–153. Springer, 2013.

[6] Dejan Baca, Martin Boldt, Bengt Carlsson, and Andreas Jacobsson. A
novel security-enhanced agile software development process applied in
an industrial setting. In Availability, Reliability and Security (ARES),
2015 10th International Conference on, pages 11–19. IEEE, 2015.

[7] Dejan Baca and Bengt Carlsson. Agile development with security engi-
neering activities. In Proceedings of the 2011 International Conference
on Software and Systems Process, pages 149–158. ACM, 2011.

[8] Steffen Bartsch. Practitioners’ perspectives on security in agile devel-
opment. In Availability, Reliability and Security (ARES), 2011 Sixth
International Conference on, pages 479–484. IEEE, 2011.

[9] Kent Beck. Embracing change with extreme programming. Computer,
32(10):70–77, 1999.

[10] Lotfi Ben Othmane, Pelin Angin, Harold Weffers, and Bharat Bhargava.
Extending the agile development process to develop acceptably secure
software. IEEE Transactions on Dependable and Secure Computing,
11(6):497–509, 2014.

[11] Lawrence Bernstein and Christine M Yuhas. Trustworthy systems
through quantitative software engineering, volume 1. John Wiley &
Sons, 2005.

[12] Konstantin Beznosov and Philippe Kruchten. Towards agile security
assurance. In Proceedings of the 2004 workshop on New security
paradigms, pages 47–54. ACM, 2004.

[13] Barry Boehm and Victor R Basili. Software defect reduction top 10
list. In Foundations of empirical software engineering: the legacy of
Victor R. Basili, volume 426. 2005.

[14] Bart De Win, Riccardo Scandariato, Koen Buyens, Johan Grégoire, and
Wouter Joosen. On the secure software development process: Clasp,
sdl and touchpoints compared. Information and software technology,
51(7):1152–1171, 2009.

[15] Tore Dyba. An instrument for measuring the key factors of success
in software process improvement. Empirical software engineering,
5(4):357–390, 2000.

[16] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software
development: A systematic review. Information and software technol-
ogy, 50(9):833–859, 2008.

[17] Tore Dybå, Nils B Moe, and Edda M Mikkelsen. An empirical
investigation on factors affecting software developer acceptance and
utilization of electronic process guides. In Software Metrics, 2004.
Proceedings. 10th International Symposium on, pages 220–231. IEEE,
2004.

[18] Elizabeth Fong and Vadim Okun. Web application scanners: Definitions
and functions. In Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, HICSS ’07, pages 280b–, Washington,
DC, USA, 2007. IEEE Computer Society.

[19] Martin Gilje Jaatun, Daniela S. Cruzes, Karin Bernsmed, Inger Anne
Tøndel, and Lillian Røstad. Information Security: 18th International
Conference, ISC 2015, Trondheim, Norway, September 9-11, 2015, Pro-
ceedings, chapter Software Security Maturity in Public Organisations,
pages 120–138. Springer International Publishing, Cham, 2015.

[20] Thomas R Knapp. Treating ordinal scales as interval scales: an attempt
to resolve the controversy. Nursing research, 39(2):121–123, 1990.

[21] Gary McGraw. Software Security: Building Security In. Addison-
Wesley Professional, 2006.

[22] Gary McGraw, Sammy Migues, and Jacob West. Building Security In
Maturity Model (BSIMM 6), 2015. http://bsimm.com.

[23] Microsoft. SDL for Agile, 2016. https://www.microsoft.com/en-us/
SDL/Discover/sdlagile.aspx [Online; accessed 30-April-2016].

[24] Hugh Robinson and Helen Sharp. Extreme Programming and Agile
Processes in Software Engineering: 5th International Conference, XP
2004, Garmisch-Partenkirchen, Germany, June 6-10, 2004. Proceed-
ings, chapter The Characteristics of XP Teams, pages 139–147. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

[25] Doug Rosenberg and Matt Stephens. Extreme programming refactored:
the case against XP. Apress, 2003.

[26] Jaana Wäyrynen, Marine Bodén, and Gustav Boström. Security engi-
neering and extreme programming: An impossible marriage? In Extreme
programming and agile methods-XP/Agile Universe 2004, pages 117–
128. Springer, 2004.

[27] Jun Zhu, Heather Richter Lipford, and Bill Chu. Interactive support
for secure programming education. In Proceeding of the 44th ACM
technical symposium on Computer science education, pages 687–692.

ACM, 2013.

