
Int. J. Cloud Computing, Vol. 3, No. 1, 2014 69

Expressing cloud security requirements for SLAs
in deontic contract languages for cloud brokers

Per Håkon Meland*, Karin Bernsmed and
Martin Gilje Jaatun
Department of Software Engineering, Safety and Security,
SINTEF ICT,
Strindveien 4, N-7465 Trondheim, Norway
E-mail: per.h.meland@sintef.no
E-mail: Karin.Bernsmed@sintef.no
E-mail: martin.g.jaatun@sintef.no
*Corresponding author

Humberto Nicolás Castejón and
Astrid Undheim
Telenor Research and Future Studies,
Otto Nielsens veg 12, N-7052 Trondheim, Norway
E-mail: humberto.castejon@telenor.com
E-mail: astrid.undheim@telenor.com

Abstract: The uptake of cloud computing is hindered by the fact that current
cloud SLAs are not written in machine-readable language, and also fail to
cover security requirements. This article considers a cloud brokering model
that helps negotiate and establish SLAs between customers and providers.
This broker handles security requirements on two different levels: between
the customer and the broker, where the requirements are stated in natural
language; and between the broker and different cloud providers, where
requirements are stated in deontic contract languages. There are several such
languages available today with different properties and abstraction levels,
from generic container languages to more domain-specific languages for
specifying the various details in a contract. In this article, we investigate
the suitability of ten deontic contract languages for expressing security
requirements in SLAs, and exemplify their use in the cloud brokering model
through a practical use case for a video streaming service.

Keywords: cloud computing; security; requirements; contracts; service level
agreements; SLAs; brokering.

Reference to this paper should be made as follows: Meland, P.H.,
Bernsmed, K., Jaatun, M.G., Castejón, H.N. and Undheim, A. (2014)
‘Expressing cloud security requirements for SLAs in deontic contract
languages for cloud brokers’, Int. J. Cloud Computing, Vol. 3, No. 1,
pp.69–93.

Copyright © 2014 Inderscience Enterprises Ltd.

70 P.H. Meland et al.

Biographical notes: Per H̊akon Meland received his MS in Computer
Science in 2002 from the Norwegian University of Science and Technology
(NTNU). Since then he has been working for SINTEF ICT and currently
holds the position of Senior Research Scientist. His research interests include
secure software engineering and composition of dynamic services. He is a
member of the Association for Computing Machinery (ACM).

Karin Bernsmed is a Research Scientist at SINTEF ICT. Her research interests
include, amongst other things, security and privacy in cloud computing.

Martin Gilje Jaatun is a Senior Scientist at SINTEF ICT, where he has
been employed since 2004. His research interests include security in cloud
computing and critical information infrastructures. He is the Vice Chairman
of the Cloud Computing Association (cloudcom.org) and a senior member of
the IEEE.

Humberto Nicolás Castejón is a Research Scientist at Telenor Research and
Future Studies. His research interests include specification and model analysis
methods of distributed, reactive systems, as well as SLA-driven resource
allocation mechanisms in cloud computing.

Astrid Undheim is a Research Scientist at Telenor Research and Future
Studies. Her research interests include performance and dependability
modelling and analysis, lately focusing on QoS and SLAs in cloud computing.

This paper is a revised and expanded version of a paper entitled ‘Expressing
cloud security requirements in deontic contract languages’ presented at
2nd International Conference on Cloud Computing and Services Science
(CLOSER 2012) held in Porto, Portugal, April 19, 2012.

1 Introduction

Cloud computing has found its way into the IT service delivery model for many of
today’s businesses. Recent numbers show that 10% of current enterprise application
software is running in the cloud, and a 50% increase is expected within the next four
years (Gartner, 2011). As pointed out by NIST (Liu et al., 2011), the continued growth
will increase the number of actors in the field, making the integration of cloud services
too complex to manage for the ordinary cloud customer. The cloud broker represents
a promising and ambitious approach to manage cloud services in the near future. Its
main purpose is to simplify the usage, performance and delivery of cloud services, and
to help negotiate the relationships between providers and customers. These relationships
are regulated through service level agreements (SLAs), which have become an important
part of the cloud service delivery model. An SLA is a binding agreement between the
cloud customer and the cloud service provider, the primary purpose of which is to state
the obligations of the provider, together with the penalties if the provider fails to uphold
the conditions.

Even though service availability is considered to be a critical issue, the number
one barrier against adopting cloud computing services is the lack of assurance for the
safekeeping of data and applications deployed in the cloud (ENISA, 2009a). Keeping
data and applications in-house is considered to be less risky since the organisation

Expressing cloud security requirements for SLAs 71

has better control of the infrastructure and configuration. For a cloud customer to
perform a proper risk analysis he will need to consider, for instance, where his data
and applications will be stored, whether they will be encrypted at rest and in transit,
and whether international standards such as ISO/IEC 27002 (2005) are being adhered
to. Even though most public cloud providers are happy to answer these types of
questions whenever asked, they will rarely or never make any promises regarding
security in their SLAs. Rather, their SLAs are standard contracts made to fit as
many customers as possible, and the providers accept little responsibility in case of a
security incident or service outage. This is a major drawback for any potential customer
who needs to ensure that, e.g., privacy legislation or internal security policies are
conformed to. We believe that in order for cloud computing to reach its full potential
as a mainstream outsourcing alternative, the customers’ security requirements must be
guaranteed through SLAs.

Existing SLAs cover traditional QoS requirements such as service performance
and availability, as well as specification of reporting and violation handling, and are
written in natural language. As pointed out by Dwivedi and Padmanabhuni (2008),
security requirements are only represented through policies and not enforced through
SLAs since they are considered more difficult to measure and quantify compared to
other QoS requirements. Minimal work has been done on security SLA representation
and enactment. This article considers a cloud broker model where the broker helps to
negotiate and establish SLAs between cloud customers and cloud service providers. The
focus is on security requirements, which are handled on two different levels: between
the customer and the broker, where the requirements are stated in natural language;
and between the broker and the different service providers, where requirements are
stated in a deontic contract language, that is, “a language that can express the rights
and obligations of parties to a contract in a form that can be parsed by software
applications and processed with other data to determine state information about matters
governed by the contract” (Leff and Meyer, 2007). We investigate the suitability of
ten existing deontic contract languages to express security requirements in the cloud
brokering model, and exemplify our results with help of a video streaming service use
case.

The article is organised as follows. In Section 2 we discuss the cloud service
brokering model in more detail, and in Section 3 we present a use case that utilises
that model to negotiate security requirements. Section 4 shows some of the deontic
contract language dialects that can be used to specify security requirements in SLAs,
and we compare these approaches in Section 5. Section 6 presents related work
on contract languages and SLA frameworks for cloud computing, while Section 7
proposes a solution based on our case study experiences. We conclude our work in
Section 8.

2 What is cloud service brokering?

In a recent Forrester report (Ried, 2011) it is argued that while reduced cost was
originally the main goal for most companies adopting cloud computing, companies
now see agility and flexibility as more important factors. Cloud brokers will have a
vital role in providing this flexibility in the future cloud ecosystem. They will act as
one-stop shops for consumers, SMEs and enterprises that look for a complete cloud

72 P.H. Meland et al.

service portfolio covering all their IT needs. It is also expected that cloud brokers
will help reducing the perceived risk associated with consuming cloud services from
different providers, as mentioned by Gartner in a recent report (Heiser and Cearley,
2011). Especially, offering single-sign on (SSO) functionality for identity federation
across different cloud providers is seen as valuable. Brokering services will prove more
and more appealing to SMEs, while large enterprises may perform the cloud brokering
themselves (e.g., brokering between their private cloud infrastructure and public clouds
for cloud bursting).

Forrester distinguishes between simple brokers that support dynamic sourcing within
one cloud segment, such as public IaaS, and full brokers that provide dynamic sourcing
across multiple private, hybrid and public clouds, and that offer a range of IaaS,
PaaS and SaaS services. Some cloud brokering services are already commercially
available (Lheureux and Plummer, 2011). Most of them, however, offer limited
functionality (e.g., billing or identity management) and few of them, if any, have
the capability of dynamically sourcing across different clouds. In academia, Tordsson
et al. (2012) have proposed an IaaS cloud broker mechanism intended to provide cloud
users with the requested number of virtual machines from multiple providers with the
best cost/performance ratio, according to a given budget. Their focus is on the total
infrastructure capacity and price, but they do not mention security requirements as
possible constraints when selecting cloud providers. In an earlier work, Elmroth et al.
(2009) discuss financial aspects of federated clouds, but they provide few details on
how this would influence the SLA of the cloud customer.

Figure 1 A cloud broker model for ensuring secure cloud deployment

Public
Cloud 1

Public
Cloud 2

Public
Cloud 3

Cloud Broker

IAM

Service Request
Settlement and

Billing
- functional req
- security req
- constraints

-SLA negotiation
-SLA monitoring
-Violation handling

SLA Management

Scheduler

In this article we envision a cloud broker model as the one depicted in Figure 1. This
broker will have business relationships with a set of cloud providers offering different
types of services, and will act as an intermediary between them and the customers.
Automatically managing SLAs with the different cloud providers on behalf of the
customers will be one of the main tasks of the broker. However, there still remain quite
a few challenges related to contract scenarios to make this possible, as presented by
Leff and Meyer (2007):

• Currently, contract documents are created using word processing applications.
These documents cannot easily be processed at convenient levels of granularity by
automated systems.

• Consumers cannot easily compare terms offered by different providers.

Expressing cloud security requirements for SLAs 73

• Contract negotiation is slow and expensive. The inefficiencies inherent in human
contract negotiation limit the value of the transaction, particularly where rich
parameter sets are involved.

• There is no standard way to map a given set of negotiated contract parameters to
a unique set of contract terms.

The challenges above could be solved by expressing customer requirements using a
suitable deontic contract language. However, few customers would have the necessary
skills or technical expertise to write a deontic contract that can be automatically
processed, and technical contract writing tools have not been widely accepted (Finnegan
et al., 2007). Another important task of the cloud broker will therefore be to translate
the customer requirements into a selected deontic contract language. This will facilitate
dynamic and automatic SLA negotiation between the cloud broker and the cloud service
providers, including renegotiation of SLAs or migration of service components in case
of changing requirements from the users as well as measured and observed SLA
violations. Since there is currently not a prevalent standard deontic contract language,
the cloud broker would in many cases need to be multilingual (i.e., able to translate into
several languages). In the following we look at the main broker tasks in more detail.

2.1 SLA management

According to TeleManagement Forum (2005), the SLA lifecycle consists of six distinct
phases:

• Service and SLA template development. The service to be provisioned is
developed and one or more SLA templates are created. Each SLA template
describes which quality level the service is offered at, its price, penalties in case
of quality level violation and other service parameters.

• Service discovery and SLA negotiation. Customers discover service providers and
negotiate specific values for the service parameters defined in the SLA template.
A successful negotiation ends up with the creation of an SLA.

• Service provisioning. The service, or an instance of it, is prepared for consumption
by the customer. This includes the configuration of the service and the resources it
uses in order to meet the SLA parameters.

• Service execution. The service is executed and monitored. The service quality is
validated and SLA violations are handled.

• SLA assessment. SLAs are examined to determine if they still fit the business
needs.

• Service termination and decommission. The service is terminated, either
successfully or due to SLA violations, and the service provider undertakes
decommissioning actions.

The cloud broker is called to play an important role in two of the aforementioned phases:
the service discovery and SLA negotiation phase; and the service execution phase.

74 P.H. Meland et al.

It is expected that the broker will negotiate and sign an SLA with a set of selected
cloud providers before including their services in its own service portfolio. However,
some SLA requirements and corresponding metrics may still be open for negotiation
with individual customers. The requirements expressed by the individual customers may
then be used by the broker’s SLA management unit to discover cloud providers fulfilling
those requirements. In the case of IaaS providers, the broker’s scheduler will use the
customer requirements to calculate the most optimal service deployment across the
discovered providers, while minimising the cost for the customer. The objective is to
reduce the cost of the deployment while adhering to the requirements. In the case of
SaaS and PaaS providers, functional requirements will also be considered to select the
most suitable providers.

After SLA negotiation, the broker will make available the requested services
from the selected providers. In the case of IaaS providers, the broker would
have adapters for the different infrastructure services, as described in the paper
by Tordsson et al. (2012). For SaaS providers, the cloud broker could migrate
data between different storage infrastructures, and also provide integration facilities
for exchange of data and information between different cloud applications and cloud
providers.

Once the services are being consumed, the broker will monitor the service execution
and measure the QoS actually experienced. In case of SLA breaches, the broker will
take actions to handle the SLA violation (e.g., request compensation), thus sparing the
customer the administrative burden of doing so. Moreover, the cloud broker may provide
smart SLA management, taking actions to prevent or remedy the SLA violation, such
as migrating workloads from one provider to another, increasing or decreasing the level
of redundancy according to the achieved availability.

2.2 End-user requirements elicitation

Ultimately, requirements in an SLA originate from an end-user – the user may have a
notion of how important availability of a solution is, what kind of throughput is desired,
and so on. Security and privacy requirements should also come from end-users, but
unfortunately this is often difficult to achieve (Tøndel et al., 2011). In particular, users
as private citizens often demonstrate the privacy paradox, where their actions fail to
live up to the strict privacy standards they claim to aspire to.

In an enterprise setting, the organisation may have a security policy that more easily
can be mapped to a set of security requirements. However, most security policies in use
today do not take new computing paradigms such as cloud computing into account, and
may not provide sufficient detail.

One option may be for users (or organisations) to define their default security level
on a coarse scale, e.g., using a slider to select between security levels as done within the
Microsoft Internet ExplorerTM internet options. When approaching a broker to request
a new service, the user should then be offered the opportunity to modify individual
security requirements related to the specific type of service requested. In essence, this
requires the deployment of a security requirements definition tool that through a series
of questions or checklists elicits requirements from the user.

A checklist approach for end-user security requirements facilitates an automatic,
pre-defined translation from natural-language specification to machine-readable
representation. While it would be possible for users to specify security requirements in

Expressing cloud security requirements for SLAs 75

a free-text form, this would preclude automatic processing by the broker, requiring a
human-in-the-loop.

3 Use case: CloudyFilms

Let us consider an imaginary use case that includes a customer, a broker and several
cloud service providers. The customer is a new startup company, CloudyFilms, which
is planning to offer video streaming on demand with a pay-per-view business model.
In order to minimise investment costs in hardware infrastructure and increase business
agility, CloudyFilms decides to deploy its service in the cloud. For that, CloudyFilms
needs different types of virtual resources, including computation and storage, with
different functional, QoS and security requirements. In particular, CloudyFilms needs
two large VMs to run the service portal and the streaming server, and a small VM to
run the customer registry. It also needs separate storage spaces for the customer data
and the video files (see Figure 2). Though there are many requirements that would be
relevant for these resources, we have chosen a small subset of security requirements
that are of particular interest for cloud computing and brokering:

1 Data retention: Data shall only be stored for the period required by the purpose
for which they were collected. When the contract between the parties expires
(or after a specific time), all consumer data must be deleted so that it cannot be
recovered.

2 Data location: Data shall only be stored or processed in a location under the
influence of the European privacy directive.

3 Non-delegation: The service provider shall not subcontract processing or storage
to any third party.

These requirements are targeted towards specific resources. For example, the data
retention requirement is imposed on the customer data storage (S1) to guarantee that
customer data is completely removed from a provider’s storage in case it is moved to
a new provider. Moreover, the location requirement is imposed on both the customer
data storage (S1) and the customer registry’s VM (VM2) to ensure they will always be
hosted in European datacentres. Finally, the non-delegation requirement is imposed on
the streaming server (VM3) and the video storage (S2). This requirement ensures that,
if S2 and VM3 are replicated on several providers, the selected providers do not use
the same infrastructure (i.e., preventing one of them from sub-contracting IaaS services
from the other one, the latter becoming a single point of failure).

In this use case, we assume that there is not a single IaaS provider able to offer
all the resources needed by CloudyFilms at an affordable price while at the same time
fulfilling all the security requirements. Since dealing with multiple providers is too much
of an administrative and technical burden for a small company, CloudyFilms decides
to use the services of a cloud broker. The broker gets CloudyFilms’ requirements on
hardware, security and QoS and uses them to select the cheapest IaaS providers that
fulfil those requirements (e.g., it selects provider 2, in Europe, to host the customer data,
even though it is more expensive than provider 3, in the USA – see Figure 2). With
each of the selected providers, the broker automatically negotiates an SLA on behalf of
CloudyFilms and supervises its enforcement.

76 P.H. Meland et al.

Figure 2 A cloud broker negotiating security requirements for CloudyFilms

streaming
server

portal
front end

video
storage

customer
register

customer
data

Functional Req
VM 1: 2 CPU
VM 2: 1 CPU
VM 3: 2 CPU
S1: 1 Gb
S2: 40 Gb

Security Req
VM 1: none
VM 2: location
VM 3: non-delegation
S1: location, retention
S2: non-delegation

VM 1

VM 2

VM 3

S 1

S 2

portal
front end

video
storage

video
storage

customer
data

Service Request

streaming
server

customer
register

Cloud
Broker

1: US, 5 $

2: EU, 10 $

3: US, 5 $

4: US, 5 $

4 Specifying security requirements in SLAs

In this section, we review a selection of ten existing deontic contract languages found
in the literature and for each of them we try to express at least one of the sample
security requirements from the use case in Section 3. This is not intended to be
an exhaustive survey, but a sample used to illustrate the diversity and suitability of
current technology for expressing security requirements in a machine readable way in
the context of service brokering for cloud SLAs. It is worth noting that many of the
reviewed languages are not directly comparable, since they are intended for somewhat
different purposes. For instance, some of the languages are intended for discovery and
negotiation, others formalise already agreed-upon contracts, and there are languages used
for evaluating service performance and triggering appropriate responses in cases where
there are violations. Some of them act as versatile containers to be used in combination
with more domain specific languages, while others have been created without much
alignment towards other languages and standards. In addition, there are all sorts of
overlap in this landscape.

4.1 SLAng

SLAng originated from the EU project Tapas (Lamanna et al., 2003a), which ended
in 2005, and was an early initiative to formalise SLAs. It was developed to capture

Expressing cloud security requirements for SLAs 77

mutual responsibilities, specifically QoS properties, between service providers and
clients. The language consists of three general components, namely a service description
(e.g., service location and provider information), contract statements (e.g., duration,
penalties) and service level specifications (i.e., technical QoS descriptions and metrics).
It has a well-defined XML syntax and semantics, and can express different levels
of non-functional features (e.g., application, resources) between independent parties.
This allows for tier-specific horizontal and vertical SLAs between service consumers
and providers. The format of the language was created to support negotiation,
contract agreements and automatic reasoning/adaptation (Lamanna et al., 2003b). In
Listing 1 we have expressed that the provider of storage for customer data (S1)
must be located in Europe and that the data must also be located in Europe. Data
retention is no-retention (what this means must be defined elsewhere), but delegation is
explicitly allowed.

SLAng is a well-known language in academia, giving inspiration to related work, but
has neither been subject to industrial uptake nor standardisation. Though the Web page
of the Tapas project does not exist any more, the public reports can still be accessed
through Sourceforge (see http://tapas.sourceforge.net/). We consider the language itself
fairly easy to use and understand, but as pointed out by Lamanna et al. (2003b), further
work is necessary on the definition of the semantics of SLAng. In most cases the
language is too abstract to specify an SLA, therefore it must be extended with more
domain specific information (Skene et al., 2010). This is exactly what we had to do
in Listing 1, since the XML attributes data location,data retention and delegation are
not part of the formal semantics of SLAng. The language has been created to support
security properties, but these are mostly of a measurable and quantifiable nature like
availability and encryption type. The language needs to be contained in a wider contract
language since it is domain specific for QoS properties.

Listing 1 Expressing data retention and delegation requirements using SLAng

1 <?xml version=‘‘1.0” encoding=‘‘UTF−8”?>

2 <SLAng xmlns:xsi=‘‘http ://www.w3.org/2001/XMLSchema−instance”

xsi :noNamespaceSchemaLocation=‘‘dave/TAPAS/SLAng0 4/SLAng0 4.xsd”>

3 <Vertical>

4 <Application>

5 <Id sls id =‘‘123” service id =‘‘S1”/>

6 <Client>

7 <Name>CloudyFilms</Name>

8 </Client>

9 <Server>

10 <Name>S1 provider</Name>

11 <Place>Europe</Place>

12 <Security data location =‘‘Europe” data retention =‘‘no−retention”

delegation =‘‘anyone”/>

13 </Server>

14 </Application>

15 </ Vertical>

16 </SLAng>

78 P.H. Meland et al.

4.2 P3P (APPEL)

The platform for privacy preferences (P3P) specification (Cranor, 2003) was created
to allow websites to express their privacy policies in machine readable format. The
purpose is to inform the user about how the personal information that is collected by
the website will be handled. Privacy preferences are expressed using APPEL (Cranor
et al., 2002), which are evaluated against the P3P policy files in order to let user agents
make automated or semi-automated decisions.

For the CloudyFilms use case, the APPEL Language can be used to place restrictions
on how the customer data stored by the provider will be used, in terms of purpose,
recipient and retention. The rule set in Listing 2 gives a data retention requirement
stating that it is not acceptable that the service provider keeps purchase information
indefinitely. Here we have assumed that the customer data consists of physical and
online contact information, as well as purchase information.

Listing 2 An APPEL rule set for restricting access to customer data
Listing 2: An APPEL rule set for restricting access to customer data

1 <appel:RULE behavior=‘‘block” description =‘‘ Service may keep

customer data indefinitely ”>

2 <POLICY>

3 <STATEMENT appel:connective=‘‘and”>

4 <DATA−GROUP><DATA>

5 <CATEGORIES appel:connective=‘‘or”>

6 <physical/><online/><other−category/>

7 <CATEGORIES>

8 </DATA></DATA−GROUP>

9 <RETENTION><indefinitely/></RETENTION>

10 </STATEMENT>

11 </POLICY>

12 </appel:RULE>

It is straightforward to place restrictions on data storage retention using APPEL,
however, it is not possible to articulate restrictions on the geographic location.
APPEL also has limited support for expressing the non-delegation requirement. Writing
policies in P3P/APPEL is considered fairly easy and there are several tools that help
translate policies stated in natural languages to the machine-readable format. The
language is easily extensible, however, the restricted vocabulary and the limited scope
(data collection practices for websites) makes it difficult to express security requirements
for service-oriented architectures such as the cloud.

Version 1.0 of the P3P specification was released in 2002, representing a cornerstone
in the online privacy protection field. However, adoption was slow from the beginning,
and a study performed four years after the introduction showed that only a fraction of
all websites had a P3P policy (Egelman et al., 2006). The work on the specification has
been officially suspended since 2006.

4.3 RBSLA

The Rule-based Service Level Agreement Language (RBSLA) (Paschke, 2005) is a
declarative mark-up language for rule-based policy and contract specifications based on

Expressing cloud security requirements for SLAs 79

RuleML (2012) and logic programming. Its intended application is to formalise contracts
so that analysis and monitoring of contract performance can be carried out at runtime.
Things like rule chaining and behaviour in cases of failure can be expressed as a part of
the contract logic. It was designed to be compatible with the Semantic Web and other
existing standards, but has not become a standard itself. The initiative seems to have lost
its momentum some years ago, since there are no recent publications, and there have
been no updates to the supporting management tools (located on Sourceforge) and the
RBSLA web page since 2006. The language itself has high expressiveness, but as with
other languages based on logic programming, it might be difficult to understand and use
by non-experts. A higher level representation that can be transformed into RBSLA is
therefore needed in most cases. Given the limited available documentation for RBSLA
we were not able to create an example listing for any of the use case study requirements.

4.4 Common policy (RFC 4745)

Common policy is better known as RFC 4745 (Schulzrinne et al., 2007), and is a
framework for creating authorisation policies for access to application-specific data.
The purpose of the framework is to combine location specific policies and presence
specific policies into one common authorisation system. The framework defines a rule
set (i.e., policy), consisting of conditions, actions and transformations (i.e., permissions),
that are evaluated in order to determine if a request for access to data items should
be permitted or not. There are currently three conditions defined in RFC4745: identity,
sphere and validity; making it possible to put restrictions on who, where and when
data can be accessed. RFC4745 does not directly support any of the example security
requirements for the CloudyFilms use case, but the identity condition may be used to
put restrictions on the domain attribute for providers who try to access the data. For
example, the rule set in Listing 3 will give access to any (authenticated) provider, except
to service providers within the domains example.com and example.org.

Listing 3 A rule set expressed according to RFC 4745

 <*+,- #0:;;<('77* =>

! <23&0#%#3&$>

(< #0-&%#%>>

7 <?1&>>

9 <-.2-/% 03?1#&:;;-.1?/,-@23?=A>

B <-.2-/% 03?1#&:;;-.1?/,-@3*'=A>

8 <A?1&>>

C <A #0-&%#%>>

D <A23&0#%#3&$>

 E <12%#3&$A>

 <%*1&$<3*?1%#3&$A>

 ! <A*+,->

The purpose of RFC4745 was to increase interoperability by allowing authorisation
policies to travel with the data, and could possibly be extended to be applicable to the
cloud brokering context. The framework has already been extended and implemented as
part of presence-based systems based on SIP (IBM, 2009).

80 P.H. Meland et al.

4.5 XACML

eXtensible Access Control Markup Language (XACML) (OASIS, 2005) describes both
a policy language and an access control decision language. It is normally used to grant
permission in order to perform an action on a resource. XACML can also be used to
find a policy that applies to a given request and evaluate the request against the policy.

The current 2.0 version of XACML is very limited for other purposes than access
control. However, in WS-XACML, which is a proposed feature for XACML 3.0, the
client (i.e., customer) can use an XACMLPrivacyAssertion to make sure that the service
fulfils an obligation regarding the client’s provided personal information. Two such
assertions will match if every requirement in each assertion is satisfied by at least one
capability in the other. The requirement in Listing 4 (expressed in pseudo code) states
that customer data should not be stored by the provider or forwarded to any third party.

Listing 4 A rule set expressed in WS-XACML

 I)6J"K*#L12>)$$-*%#3&

! 4-M+#*-?-&%$

(4NONPOQRPS 01%1 T-/% 3&,> +&%#, %*1&$12%#3& 23?/,-%-0

7 4N6QKQNPOS 01%1 &3% '#L-& %3 1&> (*0 /1*%>

9 61/1U#,#%#-$

B K*3L#0- 2+$%3?-* 01%1

XACML is very powerful and is easily extensible, but writing and reasoning over
XACML policies is considered difficult. It has been widely adopted, especially within
academic research. Version 3.0 will include additional aspects, such as delegation, which
will make it possible to delegate access policies and put constraints of the delegation.

4.6 WS-Agreement

The WS-Agreement specification (Andrieux et al., 2003) is a protocol for establishing
an agreement between two parties, such as service providers and consumers. It allows
the use of any service term, and is therefore suitable for security agreements as well.
The specification provides a template for the agreement, which consists of the name
of the agreement (this is optional), the context (i.e., the participants and the lifetime
of the agreement) and the agreement terms. The agreement terms are used to specify
the obligations of the parties and the associated guarantee terms are used to provide
assurance to the service consumer of the service quality and/or resource availability
offered by the service provider.

WS-Agreement describes three main elements: the name/ID, the context element
and the terms section. The terms section is the core part of the agreement and is used
to specify the obligations of the parties. The terms section consists of two different
parts: the service terms, which are used to describe the functional aspects of the service
(i.e., its interface description and its endpoint reference); and the guarantee terms,
which capture the monitorable aspects of the service that can fail independently of the
functioning of the core service (Ludwig et al., 2006). A guarantee term has the following
elements:

Expressing cloud security requirements for SLAs 81

• the service scope, which is used to define what servicethe terms apply to

• the qualifying condition, which defines under what conditions the guarantee
applies

• the service level objective, which defines the actual guarantee

• the business value list, which is used to express different value aspects of the
service level objectives, which in a cross-organisational setting usually are stated
as penalty or reward values.

WS-Agreement does not include any ontology for expressing security requirements, but
it is possible to use the service level objectives in the guarantee terms to put restrictions
on data storage location, retention and non-delegation using any existing security
ontologies. For example, a service level objective that uses P3P to put restrictions on
the data retention could look as illustrated in Listing 5. Note that to save space we did
not include the qualifying condition or the business value list in this example.

Listing 5 A WS-Agreement service level objective that uses P3P to put restrictions on data
retention

 <<$7'=>87-7&%..?.-/

@ <$7'=A7/.BCC+.18-#%DE.F8#-./.&%$G

! <$7'=H42#'7%.;BCC9-30#;.-G>

I <<$7'=+.-0#1.+13:.

(+.-0#1.A7/.BCC+%3-.J3&$8/.-K7%7G>

L <M<$7'=+.-0#1.+13:.>∗

N <<$7'=+.-0#1.".0.2H45.1%#0.>

O <<$7'=J8$%3/+.-0#1.".0.2>

P <EQ?QA?RHA><$%7%.;−:8-:3$.M><MEQ?QA?RHA>

 S <M<$7'=J8$%3/+.-0#1.".0.2>

 <M<$7'=+.-0#1.".0.2H45.1%#0.>

 @ <M<$7'=>87-7&%..?.-/>

WS-Agreement is an open standard and it has been widely adopted for QoS support for
service-oriented architectures in web and grid contexts.

4.7 PrimeLife Policy Language

The PrimeLife Policy Language (PPL) is an XML-based policy language developed in
the EU project PrimeLife (PrimeLife Consortium, 2012). In addition to access control,
PPL provides data handling as an extension to XACML 3.0 (Ragget et al., 2009).
PPL is focused around data handling and credential capabilities. The user’s privacy
preferences are evaluated against the service provider’s data handing policies; if there is
a match, a sticky policy can be attached to the data. PPL supports both data retention and
non-delegation; the latter by making it possible for a user to specify to whom and under
what circumstances personal data may be forwarded to a third party (called ‘downstream
data controller’ in the language specification). Non-delegation using PPL is expressed in
Listing 6, where the data handling policy AuthorizationsSet is used to define what the
service provider can do with the collected information and the ObligationsSet defines
the obligations that the provider promises to honour. The current draft of PPL does not

82 P.H. Meland et al.

support restrictions in terms of geographic location of the data storage and processing,
but the vocabulary is left open and might be extended to include such restrictions. PPL
is still very young since PrimeLife has just completed, and there is consequently little
adoption.

Listing 6 Expressing non-delegation in PPL

 <42%252&01#&'3,-6-,-&7-$>

8 <9:1#'2%#.&$;-%> << <=9:1#'2%#.&$;-%>

> <?@%A.,#B2%#.&$;-%>

! <<

C <?@%AB4.D&$%,-2EF$2'- 211.D-0GHH621$-I>

(<=?@%AB4.D&$%,-2EF$2'->

J <=?@%A.,#B2%#.&$;-%>

4.8 Business Contract Language

The Business Contract Language (BCL) (Governatori and Milosevic, 2006) is an event
driven language intended for runtime monitoring of contract terms. A single event
can be used to signify actions of the signatories, temporal occurrences or change of
state associated to a contract variable. Listing 7 shows how one may express the data
retention requirement as an obligation (i.e., pattern that must occur given an event) for
the provider.

Listing 7 A data retention requirement expressed in BCL

 3.1#7N O 42%2P-%-&%#.&

8 P.1-O 3,.Q#0-,

> R.021#%NO 9:1#'2%#.&

! S,#''-, O ;%.,-M.&$@E-,42%2

C L-A2Q#.@,O 4-1-%-M.&$@E-,42%2 26%-, ;%.,-M.&$@E-,42%2<02%- T 8

Besides obligations, modality can be used to express permissions (i.e., allowed
behaviour) and prohibitions (i.e., what must not occur). Given this expressiveness, all
three use case requirements should be possible to represent in BCL. The language also
supports the expression of violations and their corresponding reparations, which is very
relevant for security policies. The language therefore seems well suited for security SLA
negotiation, and still manages to have a limited set of constructs. It seems fairly easy
to extend, but there must be a common agreement on triggers and behaviour among the
involved parties. Though BCL was introduced in 2005, there is currently little available
information, tools and activities related to it.

4.9 ConSpec

The ConSpec Language (Aktug and Naliuka, 2008; Greci et al., 2009) can be used
to formally specify contracts and various security enforcement tasks, and it is strongly
inspired by the policy specification language PSLang (Erlingsson, 2004) for runtime
monitoring. It consists of declarations related to the security state and, like BCL,
defines events that trigger actions for updating the states. Listing 8 exemplifies the

Expressing cloud security requirements for SLAs 83

non-delegation requirement. No specific variables are defined after the security state
declaration, but the event clause tells us that the service can only be invoked as long as
it promises to not delegate the task anyone else.

Listing 8 A non-delegation requirement in ConSpec

 5489: 7*36*$#%#*&

; 5:4<=>?@ 5?)?:

A B:C8=: #&D*E-5-0D#7-F$G

H 9:=C8=I

! F$ J ,-.-'/%#*& FG J -12/.$ FKK &*&-LGG −> $E#6

ConSpec is a relatively simple and restricted language intended for expressing security
requirements, with a finite set of variables, and no loops. It is well suited for contract
matching, can be somewhat extended, but is to this date mostly limited to academic
use. However, parsing tools are available, and adoption and documentation is currently
being done through the Aniketos project (Aniketos Consortium, 2012).

4.10 eContracts

LegalXML eContracts (Leff and Meyer, 2007) is an OASIS open standard for the
markup of contract documents to enable creation, maintenance, management, exchange
and publication of contract documents and contract terms. It is intended to be used by
automated processing systems rather than lawyers, and to structure any kind of contract.
A simplified example representing the location requirement using eContracts is shown
in Listing 9. The grammatical content is represented inside the ‘block’ element, and the
character data within the ‘text’ element. In this example, we have used a conditional
attribute to express that it has a jurisdiction limited to the EU.

Listing 9 An eContracts specification with a location requirement

1 <?xml version=‘‘1.0” encoding=‘‘ utf−8”?>

2 <contract xmlns=‘‘urn: oasis :names:tc : eContracts :1:0”>

3 < title><text>Persistent storage location </text></title>

4 <conditions><condition name=‘‘EU”>European Union

</condition></conditions>

5 <body>

6 <block condition=‘‘EU”>

7 <text>Data shall only be stored on servers located

within the European Union</text>

8 </block>

9 </body>

10 </contract>

Though eContracts is a deontic contract language, the contractual terms within the
blocks are still mostly defined using natural language. The reason is that eContracts is
intended to represent contracts that have already been agreed upon and signed by the
involved parties, abstracting from the specific word processing tool used. This makes
eContracts less suitable for cloud SLA brokering. The specification defines 51 core
elements, and provides a generic structure that can be used to encompass a wide range

84 P.H. Meland et al.

of contracts. The structure is simple, with high degree of freedom. Version 1.0 of the
specification dates back to 2007, but at the same time the technical committee was
dissolved, and to the best of our knowledge there has been little subsequent activity to
continue the work of eContracts.

5 Comparison and classification of languages

In the previous section we reviewed ten different specification languages and
investigated to what degree they are suitable to express the security requirements for the
CloudyFilms use case. Table 1 summarises the characteristics and intended use of these
languages, while Table 2 shows a comparison of the languages based on the following
properties:

• feasibility: how well the language fits the type of requirements considered in the
case study

• complexity: advanced features and required expertise needed to make use of the
language (a simple language is considered to be more user friendly)

• extensibility: the possibility of adding additional concepts and expressions

• maturity: how long the language has been available and current stage in life

• support: associated documents, tools and other sources of information

• adoption: the current uptake among the relevant stakeholders.

As can be seen from Tables 1 and 2, all languages have their strengths and weaknesses.
P3P, PPL, XACML and RFC4745 are all declarative domain specific languages, the
former two intended for specifying data handling policies (i.e., privacy policies) and the
latter two for specifying access control policies. P3P represents early work in the context
of privacy protection and usage of personal information, and several of the subsequently
developed languages have been inspired by this work. However, this initiative is more
or less dead, mostly because the slow adoption and limited interest from the service
providers. In the context of contractual agreements the main disadvantage of P3P is its
limited application area (i.e., data handling policies and preferences), which is shared
by PPL. XACML is designed to be more general-purpose than both P3P and PPL,
which is both a strength and a weakness. Neither of the four domain specific languages
are however intended to be used to construct SLAs and lack fundamental properties
such as support for SLA negotiation, creation, assessment (monitoring) and violation
handling. As illustrated in Table 3, a common drawback is that they cannot be used to
put restrictions on data location.

On the contrary, WS-Agreement, BCL and ConSpec all seem suitable for expressing
security requirements in a deontic form. These three languages support several of the
phases in the SLA lifecycle discussed in Section 2. However, none of them specify a
security term ontology, leaving the problem of translating security requirements stated
in natural language to a machine-readable format unsolved.

Expressing cloud security requirements for SLAs 85

Table 1 Characteristics and intended use of the languages in Section 4

SLAng P3P RFC RBSLA XACML WS-Agr PPL BCL ConSp. eContr.
Type of language
Container x x
Declarative x x x x x x x x
Logical x
Informal x
Event-driven x x x

Intended use
Service discovery x x x
SLA negotiation x x
SLA creation x x x x
SLA assessment x x x x
SLA viol. handl. x x x
Access control x x
Privacy policy x x

Table 2 Comparing the specification languages in Section 4

Language Feasibility Complexity Extensibility Maturity Support Adoption
SLAng High Medium High High Low Low
P3P Medium Low Medium High Medium Medium
RFC4745 Low Low High Low Low Medium
RBSLA Medium High High High Low Low
XACML Low Medium High High High High
WS-Agr. High Low High High High High
PPL Medium Medium High Low Low Low
BCL High Medium Medium Medium Low Low
ConSpec High Medium Medium Medium Low Medium
eContracts Low Low High High Low Low

Table 3 Expressing the three security requirements with P3P, RFC4745, XACML and PPL

Language Data retention Data location Non-delegation
P3P yes no no
RFC4745 no no no
XACML yes no yes
PPL yes no yes

RBSLA, BCL and ConSpec are event-driven languages, which means that they
are suitable for the monitoring and violation handling parts of the SLA lifecycle
management. However, they all lack support for the fundamental parts of cloud SLA
management. RBSLA and BCL do not support service discovery, SLA negotiation and
the creations of contracts, while ConSpec does not support SLA negotiation and lacks
support for other non-functional attributes than security.

WS-Agreement and eContracts are both container languages, which means that they
lay out the structure and types of content in the different parts of the contract but
without specifying the details of the actual terms in the contract. While WS-Agreement
is intended to be used by automatic processing systems, and therefore supports creating

86 P.H. Meland et al.

agreement based on offers, an eContracts document is intended to represent an already
signed contract.

6 Related work

There are several other efforts on contract languages and SLA frameworks which we
briefly outline below.

6.1 More on contract languages

This article has investigated ten different deontic contract languages. However, there
are numerous other languages that we have not explored, including for instance
ecXML (Farrell et al., 2004), which has an event-based nature similar to BCL. The
Contract Expression Language (Wang, 2010) is similar to eContracts, meaning that
it is designed to express already agreed upon terms between the involved parties.
Web service level agreements (WSLA) was designed to be a flexible SLA definition
language, but is not suitable for security due to its focus on downtime, throughput,
response time and other quantifiable parameters (WSLA, 2003). Somewhat related to
our brokering use case, Nepal et al. (2009) present an XML-based contract language for
establishing collaborative services. Although their approach seems more geared towards
an environment of collaborating peers, they do describe a situation where collaborators
contribute through providing web services. They provide little details on security
aspects, but highlight the need for deletion of information after a contract termination. A
wider range of related policy languages and protocols can be found in papers by Yagüe
(2006) and Dwivedi and Padmanabhuni (2008). Jureta et al. (2009) mention a plethora
of approaches for describing service quality, such as quality-value-dependency-priority
model (QVDP), Quality Markup Language (QML), Web-services Offering Language
(WSOL), WSLA, quality of service-aware component architecture (QuA), uniframe,
Corba object trading service and quality objects (QuO).

According to Pearson and Charlesworth (2009), translation of legislation/regulation
to machine readable policies has proven to be very difficult, and they give an overview
of various projects that have tried to do so, including privacy incorporated software
agent (PISA), Sparcle, REALM, LegalXML, and their own Encore project (Encore
Consortium, 2008).

6.2 SLA frameworks for cloud computing

A number of frameworks for automatic SLA management have been proposed,
which differ in their application domain, the type of negotiation protocols supported
(i.e., single-round, multi-round or auction-like) and their architecture (i.e., whether they
propose a centralised broker, a distributed marketplace, etc.). The state of the art in
broker-based SLA management includes the work done in four European research
projects during the last decade, which we review below.

The SLA@SOI project (SLA@SOI Consortium, 2009) ran from 2009 to 2011
and envisioned an open, dynamic, SLA-aware market for internet service providers.
To achieve that vision, the project developed an open framework for management of

Expressing cloud security requirements for SLAs 87

SLAs through the entire service lifecycle. The framework supports multi-layered SLA
management, where SLAs can be composed and decomposed along functional and
organisational domains (Happe et al., 2011). It also supports different SLA negotiation
protocols and can be easily adapted to different application domains. The latter is
possible thanks to a generic and language-agnostic SLA model (Kearney and Torelli,
2011) that generalises and refines some of the concepts in the WS-Agreement, WSLA
and WSDL standards. This model leaves the specification of QoS service terms open,
although a limited set of standard QoS terms (e.g., for availability) have been defined.
Specifically related to this model is their SLA-enabled reference architecture, which
included requirements on compliance, transparency, security, privacy, auditability and
data encryption.

The BREIN project (BREIN Consortium, 2006) developed an intelligent grid
infrastructure enabling companies to collaborate in a dynamic e-business environment.
SLA management, based on so-called semantically annotated SLAs (SA-SLAs) (Koller
et al., 2010), plays an important role in the proposed infrastructure. SA-SLAs enable
SLA-based discovery and SLA negotiation in open markets, where different parties use
different terminologies. They are based on a combination of both WS-Agreement, used
as a container, and WSLA, used to describe the domain-specific service and guarantee
terms, which are semantically annotated.

The OPTIMIS project (OPTIMIS Consortium, 2010) aims at defining an
architectural hybrid cloud framework and toolkit enabling companies to easily move
services and applications from private clouds to trustworthy and auditable public clouds.
The envisioned toolkit will allow the implementation of different cloud architectures,
including a broker-based architecture as the one in the paper by Ferrer et al. (2012).
OPTIMIS has adopted WS-Agreement and WS-Agreement negotiation (Wäldrich et al.,
2011) for SLA specification and negotiation, and is defining its own XML schema
to describe service terms for trust, risk, eco-efficiency and cost parameters. The OVF
specification is used as term language to express data security and data centre placement
requirements (Ziegler and Jiang, 2011).

The mOSAIC project (mOSAIC Consortium, 2012) intends to create an open-source
cloud API and platform targeted for developing SLA-aware multi-cloud oriented
applications. From the end-user’s point of view, the main component is the cloud
agency, a broker that will assist applications in discovering cloud resource providers,
negotiating SLAs with these providers, and monitoring the SLA fulfilment. The
platform will use an ontology for cloud services (Moscato et al., 2011), where
security is included as a non-functional requirement, but only on a high level.
mOSAIC has chosen WS-Agreement to describe SLAs and SLA templates, and
OCCI (Open Grid Forum, 2009) as a domain specific language to describe requirements
on cloud resources.

7 Towards cloud SLAs with security requirements

From our investigation of the ten different deontic contract languages one can conclude
that there is no silver bullet when it comes to specifying security requirements in SLAs.
We are not aware of any existing language that can be used in its current form to
create a machine-readable contract that guarantees the fulfilment of our requirements on
data location, retention and non-delegation for the CloudyFilms use case. Additionally,

88 P.H. Meland et al.

the different languages represent different levels of abstraction. This is important, since
in practice, a cloud customer will most likely want to include other non-functional
requirements as well in the agreement, for example the availability, performance and
service cost.

We consider a combination of a container language with a domain specific language
to be the best solution for expressing security requirements for cloud services in a
machine-readable format. Out of the existing container languages that were evaluated
in Sections 4 and 5, we consider WS-Agreement to be the most promising candidate.
There are several reasons for this:

• WS-Agreement is well-known, widely accepted and is frequently being used,
mostly by the research communities but also in some commercial projects. Several
implementations exist. In addition, WS-Agreement is an open standard.

• WS-Agreement is easily extensible. The templates provided in the standard
include the main concepts of an agreement and the necessary language elements
that describe the main elements at the top level. The details of the agreement can
then be filled with other domain specific languages. This makes it possible to add
any kind of non-functional requirement to the agreement.

• WS-Agreement is more than just a contract language. It is compliant with
all steps in the SLA management lifecycle, including support for service
discovery, SLA negotiation and establishment, monitoring of the service terms and
termination.

The WS-Agreement specification does not define which domain specific language (DSL)
to use to express the service level objectives in an agreement. This must eventually be
agreed upon. There is also a need for an ontology that captures the concepts used in
security requirements. In this way we can represent the required and offered security
properties for a service in an unambiguous and language independent way. We have
examined several potential candidates for a security requirements DSL in this article.
However, as indicated in Table 3, none of them can be used to express the three
security requirements (i.e., data retention, data location and non-delegation) that were
considered necessary for CloudyFilms, which was a pretty simple case study. As far
as we are aware, there is no existing DSL that has been designed to express security
properties of cloud services. To remedy this, we have initiated work on an XML schema
to describe the structure of the data retention, data location and non-delegation security
requirements. In Listing 10 we outline a first draft of the schema. A complete DSL
for cloud security SLAs must, however, include all potential security controls that
cloud providers and customers would like to see included. An initial framework for
cloud security SLAs has been presented by Bernsmed et al. (2011). This framework
is intended to be put in concrete form using existing security control frameworks,
such as the ENISA cloud computing assurance framework (ENISA, 2009b), NIST SP
800-144 (Jansen and Grance, 2011) and ISO27002 (ISO/IEC 27002, 2005).

Expressing cloud security requirements for SLAs 89

Listing 10 A possible schema definition for the three security requirements

1 <xs:simpleType name=‘‘DataRetention”>

2 <xs:annotation>

3 <xs:documentation>

4 The DataRetention condition specifies how long data will be retained by

the service provider : no−retention , stated−purpose (data discarded

at the earliest time possible) ; legal−requirement (as required

by law or liability under applicable law); business−practice

(retention according to service provider ’s business practices ,

with an explicit destruction time table) ; and indefinitely .

5 </xs:documentation>

6 </xs: annotation>

7 <xs: restriction base=‘‘xs: string ”>

8 <xs:enumeration value=‘‘no−retention”/>

9 <xs:enumeration value=‘‘ stated−purpose”/>

10 <xs:enumeration value=‘‘ legal−requirement”/>

11 <xs:enumeration value=‘‘ business practices ”/>

12 <xs:enumeration value=‘‘ indefinitely ”/>

13 </xs: restriction >

14 </xs:simpleType>

15

16 <xs:simpleType name=‘‘DataLocation”>

17 <xs:annotation>

18 <xs:documentation>

19 The DataLocation condition specifies whether transfer and storage of the

data must be restricted to countries that are members of the EU (‘EU’),

to countries that may not be EU member states but that do implement the

data protection directive (‘DPD’) or if there are no such restrictions (‘None’).

20 </xs:documentation>

21 </xs: annotation>

22 <xs: restriction base=‘‘xs: string ”>

23 <xs:enumeration value=‘‘EU”/>

24 <xs:enumeration value=‘‘DPD”/>

25 <xs:enumeration value=‘‘None”/>

26 </xs: restriction >

27 </xs:simpleType>

28

29 <xs:simpleType name=‘‘Delegation”>

30 <xs:annotation>

31 <xs:documentation>

32 The Delegation condition specifies whether the service provider is allowed

to delegate the service to any other provider (‘anyone’) ,

to providers accountable to the original provider that follow different

security practices (‘ others ’) , to providers accountable to the original

provider that follow equal security practices (‘ same’), or if it is not

allowed to delegate the service at all (‘none’) .

33 </xs:documentation>

34 </xs: annotation>

35 <xs: restriction base=‘‘xs: string ”>

36 <xs:enumeration value=‘‘none”/>

37 <xs:enumeration value=‘‘same”/>

38 <xs:enumeration value=‘‘ others ”/>

39 <xs:enumeration value=‘‘anyone”/>

40 </xs: restriction >

41 </xs:simpleType>

90 P.H. Meland et al.

8 Conclusions

Current cloud SLAs are written in a natural language form, and seldom cover security
requirements. This is hindering the uptake of cloud computing, since establishing
appropriate contracts satisfying security policies is considered to be difficult and time
consuming. We envision cloud brokers to have an important role in helping customers
to find the most suitable cloud providers in a more automated and dynamic way.
The brokers would translate customer requirements into deontic contract languages,
and automatically negotiate and monitor SLAs with cloud providers on behalf of
the customers. Many different contract specification languages exist today. We have
reviewed ten of these and found that there is no single ‘silver bullet’ language that
stands out as a prevalent candidate. Further work is required on the specification and
reasoning of security requirements for cloud SLA brokering, and there is a need for a
common ontology that represents contractual security concepts.

Acknowledgements

The research leading to these results has been supported by Telenor through the
SINTEF-Telenor research agreement and the European Union Seventh Framework
Programme (FP7/2007-2013) under Grant No. 257930.

References
Aktug, I. and Naliuka, K. (2008) ‘ConSpec – a formal language for policy specification’,

Electron. Notes Theor. Comput. Sci., Vol. 197, No. 1, pp.45–58.
Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,

Rofrano, J., Tuecke, S. and Xu, M. (2003) ‘Web services agreement specification
(WS-Agreement)’ [online] https://forge.gridforum.org/projects/graap-wg/ (accessed 12
October 2012).

Aniketos Consortium (2012) ‘Aniketos – secure and trustworthy composite services’ [online]
http://www.aniketos.eu/ (accessed 12 October 2012).

Bernsmed, K., Jaatun, M.G. and Undheim, A. (2011) ‘Security in service level agreements for
cloud computing’, in Proc. 1st International Conference on Cloud Computing and Services
Science, (CLOSER 2011).

BREIN Consortium (2006) ‘BREIN FP6 EU Project’ [online] http://www.eu-brein.com/ (accessed
12 October 2012).

Cranor, L.F. (2003) ‘P3P: making privacy policies more useful’, Security & Privacy, IEEE,
Vol. 1, No. 6, pp.50–55.

Cranor, L.F., Langheinrich, M. and Marchiori, M. (2002) ‘A P3P Preference
Exchange Language 1.0 (APPEL1.0)’, World Wide Web Consortium [online]
http://www.w3.org/TR/P3P-preferences/ (accessed 12 October 2012).

Dwivedi, V. and Padmanabhuni, S. (2008) ‘Providing web services security sla guarantees: issues
and approaches’, in Khan, K.M. (Ed.): Managing Web Service Quality: Measuring Outcomes
and Effectiveness, Chapter 13, pp.286–305, IGI Global.

Egelman, S., Cranor, L.F. and Chowdhury, A. (2006) ‘An analysis of P3P-enabled web sites
among top-20 search results’, in Proceedings of the 8th Int. Conf. on Electronic Commerce,
ICEC ‘06, pp.197–207.

Expressing cloud security requirements for SLAs 91

Elmroth, E., Marquez, F.G., Henriksson, D. and Ferrera, D.P. (2009) ‘Accounting and billing for
federated cloud infrastructures’, in Proceedings of the 2009 Eighth International Conference
on Grid and Cooperative Computing, GCC ‘09, pp.268–275.

Encore Consortium (2008) ‘Encore project’ [online] http://www.encore-project.info/ (accessed 12
October 2012).

ENISA (2009a) ‘Cloud computing: benefits, risks and
recommendations for information security’ [online]
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/
cloud-computing-risk-assessment (accessed 12 October 2012).

ENISA (2009b) ‘Cloud computing information assurance framework’ [online]
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/
cloud-computing-information-assurance-framework/ (accessed 12 October 2012).

Erlingsson, U. (2004) The Inlined Reference Monitor Approach to Security Policy Enforcement.
PhD thesis, Ithaca, NY, USA. AAI3114521.

Farrell, A. D.H., Sergot, M.J., Trastour, D. and Christodoulou, A. (2004) ‘Performance
monitoring of service-level agreements for utility computing using the event calculus’,
in Proc. First IEEE Int. WS on Electronic Contracting, pp.17–24.

Ferrer, A.J., Hernández, F., Tordsson, J., Elmroth, E., Ali-Eldin, A., Zsigri, C., Sirvent, R.,
Guitart, J., Badia, R.M., Djemame, K., Ziegler, W., Dimitrakos, T., Nair, S.K.,
Kousiouris, G., Konstanteli, K., Varvarigou, T., Hudzia, B., Kipp, A., Wesner, S.,
Corrales, M., Forgó, N., Sharif, T. and Sheridan, C. (2012) ‘Optimis: a holistic approach to
cloud service provisioning’, Future Generation Computer Systems, Vol. 28, No. 1, pp.66–77.

Finnegan, J., Malone, P., Maranon, A. and Guillen, P. (2007) ‘Contract modelling for digital
business ecosystems’, in Digital EcoSystems and Technologies Conference, DEST ‘07,
pp.71–76.

Gartner (2011) ‘Public cloud services, worldwide and regions,
industry sectors, 2010–2015’, 2011 Update [online]
http://softwarestrategiesblog.com/2011/07/02/sizing-the-public-cloud-services-market/
(accessed 12 October 2012).

Governatori, G. and Milosevic, Z. (2006) ‘A formal analysis of a business contract language’,
Int. J. Cooperative Inf. Syst., Vol. 15, No. 4, pp.659–685.

Greci, P., Martinelli, F. and Matteucci, I. (2009) ‘A framework for contract-policy matching based
on symbolic simulations for securing mobile device application’, in Leveraging Applications
of Formal Methods, Verification and Validation, Vol. 17 of Communications in Computer
and Information Science, pp.221–236, Springer, 10.1007/978-3-540-88479-8 16.

Happe, J., Theilmann, W., Edmonds, A. and Kearney, K.T. (2011) ‘A reference architecture for
multi-level SLA management’, in Wieder, P., Butler, J.M., Theilmann, W. and Yahyapour, R.
(Eds.): Service Level Agreements for Cloud Computing, pp.13–26, Springer, New York.

Heiser, J. and Cearley, D.W. (2011) ‘Hype cycle for cloud security’, Research Note G00214151.
IBM (2009) ‘General considerations for setting up security for presence server’ [online]

http://publib.boulder.ibm.com/infocenter/wtelecom/v7r0m0/index.jsp?topic=/
com.ibm.presence.plan.doc/generalsecurity c.html (accessed 12 October 2012).

ISO/IEC 27002 (2005) ‘Information technology – security
techniques – code of practice for information security management’ [online]
http://www.iso.org/iso/catalogue detail?csnumber=50297 (accessed 12 October 2012).

Jansen, W. and Grance, T. (2011) ‘Guidelines on security and privacy in public
cloud computing’ [online] http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf
(accessed 12 October 2012).

92 P.H. Meland et al.

Jureta, I.J., Herssens, C. and Faulkner, S. (2009) ‘A comprehensive quality model for
service-oriented systems’, Software Quality Control, Vol. 17, No. 1, pp.65–98.

Kearney, K.T. and Torelli, F. (2011) ‘The SLA model’, in Wieder, P., Butler, J.M.,
Theilmann, W. and Yahyapour, R. (Eds.): Service Level Agreements for Cloud Computing,
pp.43–67. Springer, New York.

Koller, B., Frutos, H.M. and Laria, G. (2010) ‘Service level agreements in BREIN’, in Wieder, P.,
Yahyapour, R. and Ziegler, W. (Eds.): Grids and Service-Oriented Architectures for Service
Level Agreements, pp.157–165, Springer, USA.

Lamanna, D.D., Skene, J. and Emmerich, W. (2003a) ‘D2: specification language
for service level agreements’, Technical report, IST Project 34069 Tapas [online]
http://tapas.sourceforge.net/ (accessed 12 October 2012).

Lamanna, D.D., Skene, J. and Emmerich, W. (2003b) ‘Slang: a language for defining service
level agreements’, in Proceedings of the Ninth IEEE Workshop on Future Trends of
Distributed Computing Systems, FTDCS ‘03, p.100, Washington, DC, USA, IEEE Computer
Society.

Leff, L. and Meyer, P. (2007) ‘eContracts Version 1.0’, Technical report, OASIS [online]
http://docs.oasis-open.org/legalxml-econtracts (accessed 12 October 2012).

Lheureux, B.J. and Plummer, D.C. (2011) ‘Cool vendors in cloud service brokerage’, April
27, ID Number: G00212316, 8pp. [online] http://www.gartner.com/id=1657015 (accessed 12
October 2012).

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L. and Leaf, D. (2011) NIST Cloud
Computing Reference Architecture, NIST Special Publication 500-292.

Ludwig, A., Braun, P., Kowalczyk, R. and Franczyk, B. (2006) ‘A framework for automated
negotiation of service level agreements in services grids’, in Bussler, C. and Haller, A.
(Eds.): Business Process Management Workshops, Vol. 3812 of Lecture Notes in Computer
Science, pp.89–101, Springer, Berlin/Heidelberg, 10.1007/11678564 9.

mOSAIC Consortium (2012) ‘mOSAIC Cloud’ [online] http://www.mosaic-cloud.eu/ (accessed
12 October 2012).

Moscato, F., Aversa, R., Martino, B.D., Fortis, T-F. and Munteanu, V.I. (2011) ‘An analysis
of mosaic ontology for cloud resources annotation’, in Procs. of Federated Conference on
Computer Science and Information Systems (FedCSIS ‘11), pp.973–980, IEEE CS.

Nepal, S., Zic, J. and Chen, S. (2009) ‘A contract language for service-oriented dynamic
collaborations’, in Collaborative Computing: Networking, Applications and Worksharing,
Vol. 10 of LNICST, pp.545–562, Springer, 10.1007/978-3-642-03354-4 41.

OASIS (2005) ‘eXtensible Access Control Markup Language (XACML) Version 2.0’, OASIS
Open [online] http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf
(accessed 12 October 2012).

Open Grid Forum (2009) ‘Open cloud computing interface (OCCI)’ [online]
http://forge.ogf.org/sf/projects/occi-wg (accessed 12 October 2012).

OPTIMIS Consortium (2010) ‘OPTIMIS FP7 EU Project’ [online] http://www.optimis-project.eu/
(accessed 12 October 2012).

Paschke, A. (2005) ‘RBSLA – a declarative rule-based service level agreement language based
on RuleML’, in Int. Conf. Comp. Intelligence for Modelling, Control and Automation, and
Intelligent Agents, Web Tech. and Internet Commerce, Vol. 2, pp.308–314.

Pearson, S. and Charlesworth, A. (2009) ‘Accountability as a way forward for privacy protection
in the cloud’, in Proc. 1st International Conference on Cloud Computing, CloudCom ‘09,
Springer, pp.131–144.

PrimeLife Consortium (2012) ‘Primelife – privacy and identity management in europe for life’
[online] http://www.primelife.eu/ (accessed 12 October 2012).

Expressing cloud security requirements for SLAs 93

Ragget, D., Ardagna, C., Bournez, C., Bussard, L., Bezzi, M., Camenisch, J.,
deCapitanidi Vimercati, S., Kuczerawy, A., Meissner, S., Neven, G., Paraboschi, S.,
Pedrini, E., Pinsdorf, U., Preiss, F-S., Trabelsi, S., Tziviskou, C., Raggett, D.,
Roessler, T., Samarati, P., Schallaboeck, J., Short, S., Sommer, D., Verdicchio,
M. and Wenning, R. (2009) ‘H5.3.2 – draft 2nd design for policy
languages and protocols’, Technical report, The PrimeLife project [online]
http://primelife.ercim.eu/results/documents/120-h532-draft-2nd-design-for-policy-languages-
and-protocols (accessed 12 October 2012).

Ried, S. (2011) ‘Cloud broker – a new business model paradigm’, Technical report, Forrester
Research.

RuleML (2012) ‘The rule markup initiative’ [online] http://www.ruleml.org.
Schulzrinne, H., Tschofenig, H., Morris, J., Cuellar, J., Polk, J. and Rosenberg, J. (2007)

‘Common policy: a document format for expressing privacy preferences’, Request For
Comments 4745 [online] http://tools.ietf.org/html/rfc4745.

Skene, J., Raimondi, F. and Emmerich, W. (2010) ‘Service-level agreements for electronic
services’, IEEE Trans. Softw. Eng., Vol. 36, No. 2, pp.288–304.

SLA@SOI Consortium (2009) ‘SLA@SOI FP7 EU project’ [online] http://sla-at-soi.eu/.
TeleManagement Forum (2005) SLA Management Handbook, Vol. 2 – Concepts and Principles.
Tøndel, I.A., Nyre, Å.A. and Bernsmed, K. (2011) ‘Learning privacy preferences’, in Proceedings

of the 6th Conference on Availability, Reliability and Security (AReS).
Tordsson, J., Montero, R.S., Moreno-Vozmediano, R. and Llorente, I.M. (2012) ‘Cloud brokering

mechanisms for optimized placement of virtual machines across multiple providers’, Future
Generation Computer Systems, Vol. 28, No. 2, pp.358–367.

Wäldrich, O., Battré, D., Brazier, F. M.T., Clark, K.P., Oey, M.A., Papaspyrou, A., Wieder, P.
and Ziegler, W. (2011) ‘WS-Agreement negotiation: Version 1.0’, Technical report, Open
Grid Forum, Grid Resource Allocation Agreement Protocol (GRAAP) WG.

Wang, X. (2010) ‘Specifying the business collaboration framework in the contract expression
language’, International Journal of Business Process Integration and Management, Vol. 4,
No. 3, pp.200–208.

WSLA (2003) ‘Web service level agreements (WSLA) project’ [online]
http://www.research.ibm.com/wsla/.

Yagüe, M.I. (2006) ‘Survey on XML-based policy languages for open environments’, Journal of
Information Assurance and Security, Vol. 1, No. 1, pp.11–20.

Ziegler, W. and Jiang, M. (2011) ‘OPTIMIS SLA framework and term languages for SLAs in
cloud environment’, OPTIMIS Project Deliverable D2.2.2.1.

