
Hunting for Aardvarks:
Can Software Security be Measured?

Martin Gilje Jaatun

Department of Software Engineering, Safety and Security
SINTEF ICT

NO-7465 Trondheim, Norway
martin.g.jaatun@sintef.no

http://www.sintef.no/ses

Abstract. When you are in charge of building software from the ground
up, software security can be encouraged through the use of secure soft-
ware development methodologies. However, how can you measure the
security of a given piece of software that you didn’t write yourself? In
other words, when looking at two executables, what does “a is more
secure than b” mean? This paper examines some approaches to measur-
ing software security, and reccommends that more organisations should
employ the Building Security In Maturity Model (BSIMM).

1 Introduction

When discussing secure software engineering, the main argument for employing a
secure software development lifecycle is that it makes the software “more secure”
- but exactly what that means isn’t entirely clear.

One way of measuring security could be to count the number of security
bugs/flaws/attacks against a given software product over time, which is generally
the service offered by the Common Vulnerability and Exposures (CVE) [1] and
the National Vulnerability Database (NVD) [2]. You could argue that this gives
an after-the-fact comparison between different products, with the products with
the least number of vulnerabilities claiming the “most secure” title. However,
these kind of statistics can easily degenerate into the “damn lies” category [3],
since they do not take into account the following factors:

– What is the distribution of the software product?

– What is the attacker’s incentive for breaking the product?

For instance, an obscure piece of software could easily go for decades without
making it into any vulnerability databases even if it were riddled with security
flaws, whereas one reason for the high number of discovered security flaws in
Microsoft products can be that due to its large user base, Microsoft remains
the target of choice among the hacker population. Also, to quote Fred Brooks:
“More users find more bugs.” [4].

mgj
Typewritten Text
Published in:Multidisciplinary Research and Practice for Information SystemsLecture Notes in Computer Science Volume 7465, 2012, pp 85-92http://link.springer.com/chapter/10.1007/978-3-642-32498-7_7 



2 M. G. Jaatun

The remainder of this paper is organized as follows: In section 2 we1 present
some other approaches toward measuring software security. In section 3 we dis-
cuss how different development methodologies might affect software security, and
in section 4 we briefly consider what role testing might play in measuring soft-
ware security. In section 5 we outline the Building Security In Maturity Model
(BSIMM), and argue why it could be a good approach to software security met-
rics. We discuss our contribution in section 6, and offer conclusions in section
7.

2 Background

We will in the following present some previous work on measuring software
security, all of which has been presented at the MetriCon series of workshops.

2.1 A Retrospective

Ozment and Schechter [5] studied the rate of discovered security flaws in OpenBSD
over a span of 7 years and 6 months. Unsurprisingly, they found that the rate of
new bugs discovered in unchanged code dropped toward the end of the period
(i.e., the number of latent security flaws are presumably constant, and as time
goes by, more and more of the flaws will be found). However, new code is con-
tinually added to the code base, and this means that also new vulnerabilities are
introduced - Ozment and Schechter found that comparatively fewer vulnerabili-
ties were introduced through added code, but attributed this to the fact that the
new code represented a comparatively small proportion of the total code base
(39%). In fact, that 39% of code had 38% of the total security flaws, which is
within the statistical margin of error.

This contrasts with Brooks’ contention that “Sooner or later the fixing ceases
to gain any new ground. Each forward step is matched by a backward one.
Although in principle usable forever, the system has worn out as a base for
progress.” [4] It is possible that different rules apply to operating systems than
application programs – or that we still haven’t reached the “trough of bugginess”
in OpenBSD.

2.2 The MetriCon Approach to Security Metrics

The MetriCon workshop was held for the first time in August 2006, in con-
junction with the USENIX Security Symposium. Since this workshop doesn’t
publish regular proceedings, details are a bit hard to come by for those that did
not attend, but luckily the workshop publishes a digest2 of the presentations and
ensuing discussions, reported by Dan Geer [6–8] and Daniel Conway [9].

MetriCon covers a wide swath of what can be called security metrics, but is
a reasonable place to look for contribtutions to measuring software security. A

1 The reader is free to interpret this as the “royal we”.
2 At least for the first four events.



Hunting for Aardvarks 3

discussion at the first MetriCon [6] touched upon code complexity as a measure
of security. This is an approximate measure, at best, since complex code is more
difficult to analyze (and may thus help to hide security flaws); but correctly
written complex code will not in itself be less secure than simple code. However,
if proof of secure code is needed, complexity is likely to be your downfall – it is
no coincidence that the highest security evaluation levels typically are awarded
to very simple systems.

3 Comparing Software Development Methodologies

Traditional approaches to developing secure software have been oriented toward
a waterfall development style and “Big Requirements Up Front” – see e.g. the
documentation requirements of a Common Criteria evaluation [10].

However, the jury is still out in the matter of the security of code produced
using e.g. agile methods vs. waterfall. There are proponents who claim that XP
works just dandy in safety-critical environments (and, presumably, by extension
with great security), while other examples demonstrate that an agile mindset
purely focused on “let’s get this thing working, and let’s worry about security
later” does not present the best starting point for achieving secure code.

Eberlein and Leite [11] state that the main reason agile methods result in
poor security requirements is that the agile methods do not provide verification
(are we building the product right), only validation (are we building the right
product). Beznosov [12] thinks XP can be good enough, while Wäyrynen et al.
[13] claim that the solution to achieving security in an XP development is simply
to add a security engineer to the team.

Beznosov and Kruchten [14] compare typical security assurance methods with
generic agile methods, and identify a large number of the former that are at odds
with the latter (in their words: mis-match). Unsurprisingly, this indicates that it
is not possible to apply current security assurance methods to an agile software
development project. The authors offer no definite solution to this problem, but
indicate two possible courses of action:

1. Develop new agile-friendly security assurance methods. The authors concede
that this will be very difficult to achieve, but are not able to offer any insights
yet on what exactly such methods could be.

2. Apply the existing security assurance methods at least twice in every agile
development project; once early in the lifecycle, and once towards the end.

Siponen et al. [15] believe that all will be well if think about security in every
phase. While Poppendieck [16] argues that agile methods (specifically: XP) are
just as suitable as traditional development methods for developing safety-critical
applications. Kongsli [17] opines that agile methods provide an opportunity for
early intervention in connection with securing deployment, and argues for col-
lective ownership of security challenges. However, a security specialist is still
required as part of the team.



4 M. G. Jaatun

4 Testing for Security

There exist various static analysis tools that can analyze source code and point
out unfortunate content, but just like signature-based antivirus products, these
tools can only tell you about a set of pre-defined errors [18].

The ultimate challenge is to be presented with an executable and trying
to figure out “how secure is this?”. Jensen [19] discusses several approaches to
evaluate an executable for unwanted side-effects, but this only covers software
with hostile intent, not software that is poorly written.

Fuzzing [20] is a testing technique based on providing random input to soft-
ware programs, and observing the results. This is an automated version of what
used to be referred to as the “kindergarten test”; typing random gibberish on
the keyboard. Unfortunately, while it may be possible to enumerate all intended
combinations of input to a program, it is not possible to do exhaustive fuzz
testing – even if you leave the fuzzer running for weeks, it will still not have
exhausted all possible combinations. Thus, fuzzing is not a suitable candidate
for a software security metric – if you find flaws, you know the software has
flaws; if you don’t find flaws, you know . . . that you didn’t find any flaws – but
there may be flaws hiding around the next corner.

5 BSIMM and vBSIMM

The Building Security In Maturity Model (BSIMM) [21] and its simpler “younger
brother”3 BSIMM for Vendors (vBSIMM) were introduced by McGraw as an
attempt to bypass the problem of measuring software security; arguing that if
you cannot measure the security of a given piece of software, you can try to
measure second-order effects, i.e. count various practices that companies that
are producing good software security are doing.

5.1 The BSIMM Software Security Framework

BSIMM defines a Software Security Framework (SSF) divided into four domains
each covering three practices (see Table 1). Each practice in turn covers a number
of activities grouped in three levels (see below).

– The Governance domain includes practices Strategy and Metrics, Compli-
ance and Policy, and Training.

– The Intelligence domain includes practices Attack Models, Security Fea-
tures and Design, and Standards and Requirements.

– The SSDL Touchpoints domain refers to McGraw’s approach to a Se-
cure Software development Lifecycle [23], and includes practices Architecture
Analysis, Code Review, and Security Testing. There are more touchpoints

3 In a way the opposite of Sherlock Holmes’ smarter older brother Mycroft - “When I
say, therefore, that Mycroft has better powers of observation than I, you may take
it that I am speaking the exact and literal truth.” [22]



Hunting for Aardvarks 5

listed in McGraw’s book, but these three have been identified by McGraw
as the most important.

– The Deployment domain includes practices Penetration Testing, Soft-
ware Environment, and Configuration Management and Vulnerability Man-
agement.

Governance Intelligence SSDL Touchpoints Deployment

Strategy and Metrics Attack Models Architecture Analysis Penetration
Testing

Compliance and Policy Security Features
and Design

Code Review Software En-
vironment

Training Standards and Re-
quirements

Security Testing Configuration
Management
and Vul-
nerability
Management

Table 1. The BSIMM Software Security Framework

5.2 Maturity is one of the M-s in BSIMM

Each BSIMM practice contains a number of activities grouped in three maturity
levels. Each maturity level is given a textual description, but it’s not entirely
clear if all the activities in a lower level need to be in place to progress to the next
level – it may be assumed that the BSIMM “auditors” employ some discretion
here when collecting the interview data.

To take a random example, we can look at the Security Testing (ST) practice
within the SSDL Touchpoints domain. ST level 1 is labeled “Enhance QA
beyond functional perspective”, and comprises the activities:

– ST1.1: Ensure QA supports edge/boundary value condition testing.
– ST1.2: Share security results with QA.
– ST1.3: Allow declarative security/security features to drive tests.

ST level 2 is labeled “Integrate the attacker perspective into test plans”, and
currently has only two activities:

– ST2.1: Integrate black box security tools into the QA process (including
protocol fuzzing).

– ST2.3: Begin to build/apply adversarial security tests (abuse cases).

The third ST level is labeled “Deliver risk-based security testing”, and has
four activities:

– ST3.1: Include security tests in QA automation.



6 M. G. Jaatun

– ST3.2: Perform fuzz testing customized to application APIs.

– ST3.3: Drive tests with risk analysis results.

– ST3.3: Leverage coverage analysis.

The BSIMM authors reccommend that if using BSIMM as a cookbook, an
organization should not try to jump to the third level all at once, but rather
implement the first-level activities first, and then move on only once the first
level is truly embedded. This is partly because some higher-level activities build
on the lower-level ones (e.g., ST2.1 and ST1.1), but also because the higher-level
activities typically are more difficult and require more resources.

5.3 BSIMM in Practice

The BSIMM documentation is freely available under a Creative Commons li-
cense, and in theory there is nothing to stop anyone from using it to compare
new organizations to the ones already covered. However, it is clear that the raw
data used in creating the BSIMM reports is kept confidential, and BSIMM is
no interview cookbook – it is safe to assume that participants are not asked
directly “do you use attack models?”, but exactly how the BSIMM team goes
about cross-examining their victims is not general knowledge, and is thus difficult
to reproduce.

Using the BSIMM as a research tool may therefore be more challenging than
using it as a self-assessment tool, and the latter is certainly more in line with
the creators’ intentions.

6 Discussion

It is unlikely that we’ll see any ”fire and forget” solution for software security in
the near future, but we may aspire to a situation of ”forget and get fired”, i.e.
where software security becomes an explicit part of development managers area
of responsibility.

Recently, we have seen in job postings for generic software developers that
“knowledge of software security” has been listed as a desired skill – this may be
a hint that the software security community’s preaching has reached beyond the
choir.

If you want a job done right, you have to do it yourself – but if you can’t do it
yourself, you need other evidence. It seems that for lack of anything better, the
BSIMM approach of enumerating which of the “right” things a software company
is doing is currently the best approach to achieve good software security. It is
true that past successes cannot guarantee future happiness; but on the other
hand, a company that has demonstrated that it cares enough to identify good
software security practices is more likely to follow these in the future than a
company that does not appear to be aware of such practices in the first place.



Hunting for Aardvarks 7

7 Conclusion and Further Work

There is currently no good metric which can easily decide which one of two exe-
cutable is better from a software security point of view. It seems that currently,
the best we can do is is to measure second-order effects to identify which soft-
ware companies are trying hardest. If we are concerned about software security,
those are the companies we should be buying our software from.

More empirical work is needed on comparing software produced by differ-
ent methodologies, e.g. agile vs. waterfall. Intuitively, the former may seem less
formal and thus less security-conscious, but an interesting starting point may
be to compare the number of secure software engineering practices employed in
the different organizations. Retrospective studies may also compare the track
record of various methodologies over time, but the main challenge here may be
to identify software that is sufficiently similar in distribution and scope to make
the comparison meaningful.

Acknowledgment

The title of this paper is inspired by an InformIT article by Gary McGraw and
John Stevens [18]. Thanks to Jostein Jensen for fruitful discussions on software
security for the rest of us.

References

1. CVE: Common Vulnerabilities and Exposures (CVE). http://cve.mitre.org/
2. NVD: National Vulnerability Database Home. http://nvd.nist.gov
3. Clemens, S.L.: Notes on ’innocents abroad’: Paragraph 20 (2010) (’There are

three kinds of lies: lies, damned lies, and statistics.’ - Attributed to Disraeli) –
http://marktwainproject.org.

4. Brooks, F.P.: ”The Mythical Man-Month”. Addison-Wesley (1995)
5. Ozment, A., Schechter, S.E.: Milk or wine: does software security improve with

age? In: Proceedings of the 15th conference on USENIX Security Symposium -
Volume 15. USENIX-SS’06, Berkeley, CA, USA, USENIX Association (2006)

6. Geer, D.: MetriCon 1.0 Digest (2006) http://www.securitymetrics.org/content/-
Wiki.jsp?page=Metricon1.0.

7. Geer, D.: MetriCon 2.0 Digest (2007) http://www.securitymetrics.org/content/-
Wiki.jsp?page=Metricon2.0.

8. Geer, D.: MetriCon 4.0 Digest (2009) http://www.securitymetrics.org/content/-
Wiki.jsp?page=Metricon4.0.

9. Conway, D.: MetriCon 3.0 Digest (2008)
http://www.securitymetrics.org/content/Wiki.jsp?page=Metricon3.0.

10. ISO/IEC 15408-1: Evaluation criteria for it security part 1: Introduction and
general model (2005)

11. Eberlein, A., do Prado Leite, J.C.S.: Agile requirements definition: A view from
requirements engineering. In: PROCEEDINGS OF THE INTERNATIONAL
WORKSHOP ON TIME-CONSTRAINED REQUIREMENTS ENGINEERING
(TCRE’02). (2002)



8 M. G. Jaatun

12. Beznosov, K.: eXtreme Security Engineering: On Employing XP Practices to
Achieve ”Good Enough Security” without Defining It. In: Proceedings of the
First ACM Workshop on Business Driven Security Engineering (BizSec). (2003)

13. J. Wäyrynen and M. Boden and G. Bostrøm: Security engineering and eXtreme
programming: An impossible marriage? In: Extreme Programming and Agile Meth-
ods - Xp/ Agile Universe 2004, Proceedings. Volume 3134 of Lecture Notes in
Computer Science., Springer-Verlag Berlin (2004) 117–128

14. Beznosov, K., Kruchten, P.: Towards agile security assurance. In: Proceedings of
New Security Paradigms Workshop, Nova Scotia, Canada (2004)

15. Siponen, M., Baskerville, R., Kuivalainen, T.: Integrating security into agile devel-
opment methods. In: Proceedings of Hawaii International Conference on System
Sciences. (2005)

16. Poppendieck, M., Morsicato, R.: XP in a Safety-Critical Environment. Cutter IT
Journal 15 (2002) 12–16

17. Kongsli, V.: Towards agile security in web applications. In: Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems, languages,
and applications. OOPSLA ’06, New York, NY, USA, ACM (2006) 805–808

18. McGraw, G., Steven, J.: Software [In]security: Comparing Apples, Oranges, and
Aardvarks (or, All Static Analysis Tools Are Not Created Equal) (2011)

19. Jensen, J.: A Novel Testbed for Detection of Malicious Software Functionality.
In: Proceedings of Third International Conference on Availability, Security, and
Reliability (ARES 2008). (2008) 292–301

20. Miller, B., Fredriksen, L., So, B.: An empirical study of the reliability of unix
utilities. Communications of the ACM 33(12) (1990)

21. McGraw, G., Chess, B., Migues, S.: Building Security In Maturity Model (BSIMM
3) (2011)

22. Doyle, A.C.: Memoirs of Sherlock Holmes.
http://www.gutenberg.org/files/834/834-h/834-h.htm.

23. McGraw, G.: Software Security: Building Security In. Addison-Wesley (2006)




