
10

A Lightweight Approach to Secure Software
Engineering

M. G. Jaatun, J. Jensen, P. H. Meland and I. A. Tøndel

SINTEF ICT

183

Author version. In Stig F. Mjølsnes (ed.)"A Multidisciplinary Introduction to
Information Security", copyright CRC Press 2011
https://www.routledge.com/A-Multidisciplinary-Introduction-to-Information-
Security/Mjolsnes/p/book/9781138112131

184 A Multidisciplinary Introduction to Information Security

CONTENTS

10.1 Introduction . 185
10.2 Assets . 185

10.2.1 Asset Identification . 186
10.2.2 Asset Identification in Practice . 187

10.2.2.1 Key Contributors . 187
10.2.2.2 Step 1: Brainstorming . 187
10.2.2.3 Step 2: Assets from Existing Documentation 189
10.2.2.4 Step 3: Categorization and Prioritization 189

10.2.3 Example . 191
10.3 Security Requirements . 193

10.3.1 Description . 193
10.3.2 Security Objectives . 195
10.3.3 Asset Identification . 196
10.3.4 Threat Analysis and Modeling . 196
10.3.5 Documentation of Security Requirements 196
10.3.6 Variants Based on Specific Software Methodologies 197
10.3.7 LyeFish Example Continued . 197

10.4 Secure Software Design . 198
10.4.1 Security Architecture . 198
10.4.2 Security Design Guidelines . 199

10.4.2.1 Security Design Principles . 199
10.4.2.2 Security Patterns . 200

10.4.3 Threat Modeling and Security Design Review 200
10.4.4 Putting It into Practice – More LyeFish 203

10.4.4.1 Applying Security Design Principles 203
10.4.4.2 Making Use of Security Design Patterns 205
10.4.4.3 Make Use of Tools for Threat Modeling 205
10.4.4.4 Performing Security Review 205

10.5 Testing for Software Security . 206
10.5.1 Background . 206
10.5.2 The Software Security Testing Cycle . 208
10.5.3 Risk-Based Security Testing . 209
10.5.4 Managing Vulnerabilities in SODA . 210
10.5.5 Example – Testing LyeFish . 213

10.6 Summary . 213
10.7 Further Reading and Web Sites . 214

Bibliography . 214

A Lightweight Approach to Secure Software Engineering 185

10.1 Introduction

Secure software engineering1 is much more than developing critical software.
History has shown us that software bugs and design flaws also represent ex-
ploitable security vulnerabilities in seemingly innocuous applications such as
web browsers and PDF document viewers. This implies that there is a need
for a well-balanced amount of security awareness in all software development
projects right from the beginning.

Most software developers are not primarily interested in (or knowledgeable
about) security; for decades, the focus has been on implementing as much
functionality as possible before the deadline, and then patch whatever bugs
there may be when it’s time for the next release or hotfix. However, it is slowly
beginning to dawn on the software engineering community that security is
important also for software whose primary function is not related to security.

There are clear indications that significant cost savings and other advan-
tages are achieved when security analysis and secure engineering practices are
introduced early in the development cycle, and that the number of serious
security defects can be significantly reduced with a minimum of extra costs.
However, having a clear security focus is not easy, and today there are very few
people that master both the art of software and security engineering. There is
thus a need for closer collaboration and knowledge transfer between the two
factions.

SODA is an approach to inject secure software engineering practices into
existing software development processes. The SODA target group is the “ordi-
nary” developer, who is not primarily interested in (or knowledgeable about)
security, but must focus on designing/implementing as much functionality as
possible before the deadline is passed and/or the budget is exhausted.

SODA is based on the following assumptions:

1. A developer will not try to learn or memorize security knowledge
prior to starting the development.

2. There should be no significant change in the way developers work.

3. There must be good tool support that enhances security during
development, preferably integrated into the current development
tools.

In the following sections, we will present how this philosophy is reflected in
approaches for asset identification, security requirements elicitation, security
design, and security testing. As can be seen from the grayed-out parts of
Figure 10.1, we will not cover secure coding, deployment or monitoring, but
these topics are covered by several easily accessible books (e.g., [5, 6]).

1This chapter is primarily based on results from the SODA project, as documented in
a series of papers [1, 2, 3, 4]. For more detailed references and background, please refer to
these original papers.

186 A Multidisciplinary Introduction to Information Security

FIGURE 10.1
The main phases of the SODA approach to secure software engineering.

10.2 Assets

10.2.1 Asset Identification

The concept of “assets” is central to the very idea of security – we need security
because we have something that needs protection. This “something” is what
we collectively refer to as our assets. Thus, asset identification is a crucial
component of the requirements phase – specifically, security requirements are
primarily needed in order to specify what we need to do to protect our assets,
and this will obviously be impossible to do properly unless we know what
these assets are. To highlight the importance of the asset identification phase,
we detail it here first, separately from the main security requirements phase,
which is described in Section 10.3.

The goal of the method we describe in the following is to discover all
the assets that are relevant for the system being developed, and facilitate a
prioritization process in order to identify which assets have a higher (or lower)
priority with respect to security. Strictly speaking, our primary concern is to
identify the assets that are most important – if we overlook assets that don’t
need protection, we can still sleep at night.

Before asset identification takes place, the main security objectives of the
software to be developed should be identified. By security objectives, we mean
high-level security requirements or goals identified by customers, and any se-
curity requirements coming from standards, policies, or legislation. The results
of asset identification should be used as a basis for identifying threats, where

A Lightweight Approach to Secure Software Engineering 187

attack trees or similar are created based on the most important assets identi-
fied. Security requirements are then elicited based on threat analysis.

10.2.2 Asset Identification in Practice

The SODA asset identification method helps to establish an overview of the
assets of a system and their different requirements for protection. This infor-
mation makes it easer to prioritize security requirements (either informally,
or as part of a formal risk analysis process) later on. We suggest to look at
the value of the assets both from the user’s and the system owner’s point
of view, but also from the view of an attacker. To identify assets, one can
use functional requirements of the system in combination with brainstorming
techniques. For each asset, one should then make a judgment regarding the
different stakeholders’ priority of the confidentiality, integrity, and availability
of this asset. When assigning priorities, one should use predefined categories,
for instance, high, medium, and low.

When an asset identification has been performed, you should have an
overview of which properties of what assets are most important to protect.
This information should be used to prioritize requirements and to identify
where to focus the effort when it comes to identifying more detailed require-
ments.

10.2.2.1 Key Contributors

The asset identification process should be performed by a diverse group com-
posed of

• The developer’s requirements team

• Other developers (not part of the core requirements team)

• Security experts (if available – security expertise will be a bonus in this
process, but our method is designed to also work without it)

• Customers and/or end-users (if applicable)

Generally, anyone that could contribute with ideas on assets may con-
tribute, but the total group should not exceed eight persons (plus facilitator).
We assume that the participants either are familiar with the system before
the asset identification starts, or that a short briefing on the main system
characteristics is given as part of the introduction.

This method can be used in any project. For large projects, one may
however need to use more coarse assets than in smaller projects, or execute
the method several times on a subset of the application domain.

10.2.2.2 Step 1: Brainstorming

Our brainstorming technique may be considered an amalgamation of tradi-
tional brainstorming and “brainwriting.” The purpose of brainstorming is gen-

188 A Multidisciplinary Introduction to Information Security

erally to generate ideas on a given topic; in our case, the topic is restricted to
answering the question “what are our assets.” By using this technique, one is
able to involve different types of persons in a creative idea-generating process,
without putting too many restrictions on the end result.

As preparation for the brainstorming session, sticky notes2 and felt-tip
pens/markers must be made available for all participants, and somewhere to
put the sticky notes during brainstorming must be provided (e.g., a large sheet
of paper to put on the wall).

1. Present the process and the rules to follow while brainstorming:

•Everybody shall participate

•No discussion/criticism during the brainstorming

•One should build on ideas presented by others

2. Give out sticky notes and markers to all participants.

3. Decide on a time limit for individual brainstorming (e.g., 5 minutes).

4. Formulate a question on which to brainstorm (e.g., “What are our
assets?”), write it down and place it somewhere visible to everybody
in the group.

5. All participants write down their ideas – one idea in large letters
per note (the note should be readable from a distance of several
meters).

6. When time is up, everybody presents their ideas to the group by
placing their notes on, for instance, a piece of paper on the wall.
Often it is advantageous to do this in a structured way: Everybody
takes turns presenting their ideas. One is only allowed to present a
limited number of ideas at the time, and the remaining ideas must
wait until the next round.

7. Group the ideas and eliminate duplicates. Everybody should par-
ticipate in this step.

8. Document the result, for example, with a camera.

Note that although Wilson [7] warns that a trained facilitator is necessary
to ensure success of a brainstorming session, we have found that even with
just “normal” participants (and appointing one facilitator), there is tangi-
ble value to be had from brainstorming. Furthermore, this is also to a great
extent learning by doing – if a development organization frequently employs
brainstorming in relevant situations, the individual participants will in time
become reasonably confident (if not to say skilled) as facilitators.

2For example, Post-it NotesR©, a registered trademark of 3M (http://www.3m.com). We
have found that generic-brand sticky notes also work. (We are also aware that there are
various computer-based brainstorming tools that may be used instead of our paper-based
method, but this is simply a matter of preference – the general process remains the same.)

A Lightweight Approach to Secure Software Engineering 189

TABLE 10.1
Asset prioritization table

ASSETS STAKEHOLDERS’ PRIORITY

Focus: protection.
What is most important to protect from
stakeholders’ point of view?

Focus: attacks.
What is most inter-
esting/valuable for
an attacker?

Description System user System owner Attacker
<asset 1> <C-? I-? A-?> <C-? I-? A-?> <C-? I-? A-?>
<asset 2> <C-? I-? A-?> <C-? I-? A-?> <C-? I-? A-?>
...

In a small group where the participants know one another well, it may be
more cost-effective with respect to time to let each participant express their
ideas orally (one at a time), and assign one participant (or facilitator) to write
the ideas on a whiteboard as they are presented. In this case, duplicates are
avoided, and it may be easier (quicker) to get new ideas regarding assets based
on the assets that are being presented.

10.2.2.3 Step 2: Assets from Existing Documentation

Once the brainstorming session is finished, it is a good idea to examine any
available functional requirements or functional descriptions of the system to
determine whether any important assets have been overlooked. In some cases,
this may inspire a second round of brainstorming.

10.2.2.4 Step 3: Categorization and Prioritization

Once a list of assets is available, the assets must be categorized and prioritized
with respect to security. This should be performed by the same group that
participated in the asset identification, possibly augmented by management
participation. (Management should possibly not be invited to the brainstorm-
ing session itself, since one of the pitfalls identified by Wilson [7] is inviting
“anyone [...] who is feared by the other members.”)

We recommend assigning priorities from three stakeholders’ perspectives:

• The System User

• The System Owner

• The Attacker

As can be seen from Table 10.1, the different stakeholders’ priority of the
assets is described with three letters:

C: Confidentiality

190 A Multidisciplinary Introduction to Information Security

I: Integrity

A: Availability

These letters can then get assigned a value indicating the importance of
confidentiality, integrity, or availability for this asset. We maintain that the
traditional CIA triad is enough for this purpose – additional properties like
nonrepudiation will represent special cases that should be treated separately.

1. Decide which categories to use to represent priorities. In most cases
it will be adequate with three (qualitative) levels:

H:High

M:Medium

L:Low

2. For each asset, make a judgment regarding the different stakehold-
ers’ priority of the confidentiality, integrity, and availability of this
asset. If, for example, confidentiality is not an issue for an asset, it
is not necessary to include this property and assign a level to it (the
same goes for integrity and availability).

3. After values for the importance of CIA have been assigned for all
stakeholders of all assets, calculate a ranking sum for each secu-
rity property of each asset by adding 3 for every High, 2 for ev-
ery Medium, and 1 for every Low. For instance, if the asset “Web
Server” is listed as A-M, C-M I-H A-H, C-M I-H A-H, the web
server gets a Confidentiality rank of 0+2+2 = 4, and so forth.

4. Create three ordered lists with the assets prioritized according to
Confidentiality, Integrity, and Availability.

5. If many assets have been identified, consider pruning the assets with
consistently low priorities.

If management has not been involved up to this point, they should be
given the opportunity to comment on the asset tables. For small systems
where a limited number of assets are identified, the final prioritization may
be performed manually.

The success of the method is very much dependent on the individuals par-
ticipating in asset identification, as the types of assets identified will depend
on their competence and main focus. Since the method is based on brain-
storming, which is not a structured method, it may be beneficial to “tune”
the process by utilizing checklists or predefined questions in the brainstorming
activity.

Using functional requirements as a starting point comes with the risk of
not covering abstract assets such as the company’s reputation, the safety of
employees, and availability and connectivity of resources. We believe, however,
that for this lightweight approach, most of the assets of this type can be

A Lightweight Approach to Secure Software Engineering 191

indirectly covered by looking at the different actors’ value of the assets. When
stating the value of an asset from the owner’s point of view, reputation should
be part of the evaluation.

In the SODA approach, information on an asset is limited to values repre-
senting the importance of the confidentiality, integrity, and availability of this
asset. This is done to keep the method lightweight, and it is what is needed
for prioritization. The reasons behind these values and the criteria used are
however lost. This may reduce the possibility to reuse the results later, and
makes it harder to compare results of different sessions since the criteria may
be different.

An advantage of including the attacker’s perspective is that this indirectly
covers some assets that are otherwise easily overlooked (or difficult to relate
to). A specific example of this is the “Reputation” asset: In the past, it may
not have mattered to a company if someone uses their file servers without per-
mission for storing data, as long as they behave themselves and do not create
problems for legitimate users. (The example is somewhat construed, since I
cannot imagine a system administrator ever “not caring” about illegitimate
users on her system; however, this effectively would have been the reaction of
the local police force should the incident have been reported: “Sooo. . . nothing
was actually stolen . . . ?”) However, this changes dramatically if the company
risks being exposed in the tabloids as a haven for file-sharers and other de-
viants – suddenly protecting the “File Server” asset becomes much more im-
portant, implicitly because of the “Reputation” asset.

10.2.3 Example

We will now illustrate how the asset identification technique works through
development of an imaginary example, which we will call the LyeFish tool.

The idea behind LyeFish is to provide a tool for amateur chefs who want
to experiment with the effect of lye solutions on ichthyoids. It is basically
a publicly accessible web resource with open content, but where users can
log on to receive more personalized service. LyeFish shall assist the users in
selecting techniques by offering a set of questions about the user’s preferences
and create a profile based on the answers.

LyeFish shall be an independent and self-contained application – meaning
that it does not depend on any other systems to be useful to its users. However,
LyeFish may contain recommendations of other products that are useful for
applying the individual techniques.

The security objectives (ref. Section 10.3.2) that provided the context for
the asset identification were

• Integrity of the application

• Hosting organization’s IT regulations and security policy

A brainstorming session as described in Section 10.2.2.2 produces the assets

192 A Multidisciplinary Introduction to Information Security

FIGURE 10.2
Result of the brainstorming session.

TABLE 10.2
Asset prioritization table

ASSETS STAKEHOLDERS’ PRIORITY

Focus: protection.
What is most important to pro-
tect from stakeholders’ point of
view?

Focus: attacks.
What is most in-
teresting/valuable
for an attacker?

Description System user System owner Attacker
Code base C-L I-M A-M C-M I-H A-L
Data I-M A-M I-H A-M I-L A-L
Profile C-M I-H A-L C-M I-H A-L C-L I-L A-L
Credentials C-H I-H A-L C-H I-H A-L C-H I-H A-L
Admin. account C-H I-H A-H C-H I-H A-M C-M I-H A-L
Web Server A-M C-M I-H A-H C-M I-H A-H

depicted in Figure 10.2. We then proceed immediately to classification and
prioritization.

The identified assets and the results of the prioritization process are shown
in Table 10.2. Reputation was also identified as an asset, but it proved difficult
to fit this into the mold, and it was therefore left out of the table. However, it
was agreed that damage to the integrity of the application would also damage
our reputation (as system owner).

As can be seen, availability of the personalized service is not considered of
high importance, since the open content will still be available. Confidentiality
is also not considered relevant for the open content.

Finally, prioritization is performed for each of the security categories Con-
fidentiality, Integrity, and Availability by assigning each H the value 3, each

A Lightweight Approach to Secure Software Engineering 193

TABLE 10.3
Calculated asset ranking

Confidentiality Integrity Availability
ASSETS Sum ASSETS Sum ASSETS Sum
Admin. account 9 Admin. account 9 Web Server 8
Credentials 9 Credentials 9 Admin. account 6
Profile 5 Profile 7 Data 5
Web Server 4 Web Server 6 Code base 5
Code base 3 Data 6 Credentials 3
Data 0 Code base 5 Profile 3

M the value 2 and each L the value 1. A missing category for any stakeholder
counts as 0. This produces three prioritized lists of assets; on per security
category (C,I,A), where the highest sum gives the highest priority.

In this example, note that the confidentiality and integrity of the admin-
istration account is considered equivalent (in terms of ranking score) to the
other credentials in the system, but as security professionals, we intuitively
give the administration account slightly higher priority. Note also that when
it comes to availability, the web server itself comes out on top – this is rea-
sonable, since the web application may deliver considerable benefit even if the
administrator is unable to access it.

10.3 Security Requirements

10.3.1 Description

Information security requirements are important in all software engineering
projects, not only to ensure the correct level of security in the end product,
but also to avoid implementing security solutions that turn out to be a bad
fit. Since security thus is important also for “ordinary” software development
projects, we need mechanisms for security requirements elicitation that will be
palatable to “regular” software developers and suitable for use in all software
development. These mechanisms must be both easy to understand, and easy
to use! Although formal methods undoubtedly have their merits, their use is
precluded in this context.

Before we dive into the description of the security requirements process,
we will briefly describe some artefacts which are typically used and/or created
when eliciting security requirements.

Misuse cases (see Figure 10.3) [8] extend the regular use case diagrams with
negative use cases (misuse cases) that specify behavior not wanted in the

194 A Multidisciplinary Introduction to Information Security

FIGURE 10.3
Misuse case diagram for a publicly available web application.

FIGURE 10.4
Attack tree detailing an attack on a web server.

A Lightweight Approach to Secure Software Engineering 195

Security

objectives
Asset

identification

Threat

analysis

The most

valuable assets

Documentation of security requirements

FIGURE 10.5
Core requirements phase.

system. Use cases can mitigate misuse cases, meaning that a use case can
be a countermeasure against a misuse case – thereby reducing the chances
that the misuse case succeeds. Misuse cases can threaten a use case, meaning
that the use case is exploited or hindered by a misuse case.

Abuser stories were first introduced by Peeters [9] as an agile counterpart
to misuse cases. An abuser story is a brief and informal description of how
an attacker may abuse the system at hand. Abuser stories are not yet widely
used, but there are some experience reports [10, 11] that show that variants
have been used successfully in agile software development projects.

Attack trees Attack trees [12] represent attacks/threats against a system
in a tree structure, with the goal as the root node and different ways of
achieving that goal as leaf nodes (see Figure 10.4). The diagrams can be
used both in the requirements and design phases. Trees can be represented
graphically or can be written in outline form. It is also possible to add
information on, for example, cost of attack.

The main focus of the SODA security requirements phase is identifica-
tion of security objectives, assets, and threats; this results in the steps for
identification of security requirements that are illustrated in Figure 10.5.

10.3.2 Security Objectives

The aim of this step is to identify the paramount security requirements; that is,
the requirements that are most important to customers, and the requirements
that must be met to comply with relevant legislation, policies, and standards.
This is necessary to set boundaries and constraints in order to prioritize secu-
rity efforts and make necessary trade-offs later. Identifying security objectives

196 A Multidisciplinary Introduction to Information Security

consists of two main activities: Identification of the customer’s need for se-
curity, and identification of relevant legislation, policies, standards, and best
practices that apply to the system/module. An important part of the process
of eliciting security requirements is customer meetings that focus on security
issues, and we will provide concrete tips when it comes to how to prepare for
such a meeting. We also give examples of where to look for requirements from
legislation, policies, and standards.

10.3.3 Asset Identification

When an asset identification has been performed (see Section 10.2), you should
know which assets are most important to protect, and hopefully also which
properties of these assets are the most important. This information should be
used to prioritize requirements and to identify where to focus the effort when
it comes to identifying more detailed requirements.

10.3.4 Threat Analysis and Modeling

Swiderski and Snyder [13] list the following purposes of threat modeling:

• Understand the threat profile of a system.

• Provide recommendations/solutions for secure design and implementation.

• Discover potential vulnerabilities.

• Provide feedback for the application security life cycle.

The aim here is to identify the main threats to the system/module. We
recommend basing the identification of threats on the most important as-
sets identified and the STRIDE categories (spoofing, tampering, repudiation,
information disclosure, denial of service, elevation of privilege). The most im-
portant threats identified should then be further elaborated using attack trees.
The attack trees identified at this stage should not be making too many as-
sumptions regarding design decisions that have not been made yet. The attack
trees will therefore be less detailed than what may be needed in later stages
of the development process and may therefore need to be further elaborated
in later phases. While it is certainly possible to draw threat trees and misuse
case diagrams by hand, special-purpose tools such as SeaMonster (see Section
10.4.4.3) often makes the job easier, particularly when the diagrams need to
be updated.

If the developers have access to a vulnerability repository (see Section
10.5.4), it should be consulted here as part of the threat analysis, and also
revisited in the design phase.

A Lightweight Approach to Secure Software Engineering 197

10.3.5 Documentation of Security Requirements

The main aims of this activity are to make the security requirements visible,
show which security requirements are high priority, and arrange for traceabil-
ity and follow-up of requirements. We suggest to describe all requirements in
one place, either in a separate document or as part of a general requirements
document, to be able to keep an overview of all requirements.

A good security requirement is similar to pornography, in that it is difficult
to define, but we recognize it when we see it.3 We recommend to describe
requirements that are focused on what should be achieved – not how. Also,
negative requirements (“It should no be possible to ...”) should be avoided,
since they are not testable. The following is an example of a good security
requirement: “Only hashed passwords shall be stored in the user database.”
We also recommend to give each requirement an identifier, specify the source of
the requirement, and state the requirement’s priority. For each requirement, it
should also be possible to add information on how the requirement is followed
up during development (requirement tracking).

10.3.6 Variants Based on Specific Software Methodologies

The core requirements phase is, as much as possible, not tied to a specific
software development methodology. This results in the recommendations be-
ing usable for a broad group of software developers, but some developers could
benefit from using other techniques that fit better with their current method-
ology. The technique where this is most obvious is threat analysis, where we
currently recommend attack trees. If the developer has already used UML use
cases to describe functional requirements, misuse cases will probably be a bet-
ter choice than attack trees. For developers using, for example, eXtreme Pro-
gramming, abuser stories will probably be the better choice. Agile developers
will also probably prefer a less rigid way of documenting security requirements
– for instance, by using the abuser stories for this directly. For developers using
these methodologies, the recommended techniques will therefore differ from
what is specified as the core requirements phase.

10.3.7 LyeFish Example Continued

Having identified the most important assets in Section 10.2.3, we now look
into possible threats to these assets before going on to specify security re-
quirements. We do this with the help of misuse case diagrams and attack
trees.

We start out by sketching some high-level properties of the LyeFish tool,
normally as a coarse use case diagram (remember to avoid making assump-
tions about design decisions that have not yet been made!). We then perform

3Paraphrased from Potter Stewart’s concurrence in the Jacobellis vs Ohio case (1964).

198 A Multidisciplinary Introduction to Information Security

another brainstorming exercise, this time focusing on how an attacker might
abuse our system, and extend our use case diagram into a misuse case diagram.

In Figure 10.3, we have presented (parts of) a misuse case diagram for the
LyeFish tool. From the diagram, we can see that the actor “Administrator”
administrates the web server, and generally “provides service” through the
LyeFish application. The actor “User” is someone who uses the LyeFish ap-
plication via a web browser, and among the many things a User might do, the
diagram illustrates browsing recipes, signing up for a personalized account,
logging into an existing account, and updating personal profile. On the right
side of the diagram can be seen an “Attacker” actor who might be interested
in various nefarious activities, including gaining privileged access to the web
server, making the service unavailable, and stealing the identity of innocent
Users.

In Section 10.2.3, we determined that the administrator account and the
web server itself were the most important assets, and we could argue that
getting privileged access to the web server is a good step on the way to com-
promising the administrator account. We have therefore detailed an attack
tree for this in Figure 10.4. Note that neither the misuse case diagram nor the
attack tree presented can be considered complete, but are illustrations which
can be used as starting points. Note also that it pays to keep misuse case
diagrams and attack trees small; if they get too large, it is easy to get lost.
Partly for this reason, we have decomposed the attack “Exploit Web Applica-
tion Vulnerability” into specific attacks “Buffer Overflow,” “SQL injection,”
and so forth, and each of these are documented (elsewhere) as a separate
attack tree.

On the left side of Figure 10.4, there are two branches connected by an
“and” symbol, meaning both branches must be accomplished in order to have
a successful attack. If we can minimize the possibility of exploiting a web server
vulnerability, that goes a long way, and thus a reasonable requirement would
be: “A regime for timely application of security updates shall be implemented
for the web server.” If possible, it would be even better if “timely” could be
quantified better.

Since the right branch covers web application vulnerabilities, this calls for
a bunch of “classical” software security requirements, for example, “All input
from web users must be validated on the server side.”

10.4 Secure Software Design

The SODA approach is also applicable to software development projects where
architecture and design are central.

A Lightweight Approach to Secure Software Engineering 199

10.4.1 Security Architecture

The architecture describes a system on an abstract level, while leaving the
implementation details unspecified. The traditional security architecture deals
with system level security mechanisms and issues, such as security perimeters,
cryptography, access control and authorization. Having this separation can be
unfortunate, as the security should be embedded into the overall software and
system architecture, creating a secure architecture. This should be done by
showing how the architecture, and its components satisfy both the functional
and nonfunctional security requirements. The software architecture should
include countermeasures to compensate for vulnerabilities or inadequate as-
surances in individual components or cross-component interfaces, for example,
by isolating components.

The architecture and the more detailed design will usually consist of a
set of (hierarchical) diagrams and documents that describe the structure and
behavior of software and its environment. There are several notations and
techniques for creating these, with the UML flavors as the industry leader.
Several security specific extensions with tool support for UML have been cre-
ated.

Creating a secure architecture and design is the overall activity in this
life cycle phase and relies on and iterates with requirements specification and
implementation. The next sections describe techniques that are to be used as
a part of architecture and design.

10.4.2 Security Design Guidelines

Security design guidelines should be considered as a broad category of the-
oretical information that comes in handy when creating secure applications.
These typically span from less formal best practices, principles, and rules-of-
thumb to different kinds of policies, rules, regulations, and standards. Howard
and Lipner [14] say that secure design best practices focus on “good security
hygiene” within the application. However, the challenge is to know what good
hygiene is before you start doing the “dirty work.” Forcing too much theoreti-
cal information about ways to incorporate security is not very efficient. To be
aligned with the SODA assumptions, we have chosen to focus on two specific
kinds of guidelines and best practices; namely, security design principles and
security patterns.

10.4.2.1 Security Design Principles

Security design principles are a specific type of guidelines and practices. They
are proven rules for improving the security posture of an application, and
in order to be useful, the principles must be applied to specific problems.
This is the great advantage with them since they can be identified during the
requirements phase doing threat modeling. There exist a large number of such
principles, and even though just reading through them once in a while will

200 A Multidisciplinary Introduction to Information Security

improve security consciousness, the real value is added when they are directly
used to identify weaknesses and argue for architecture and implementation
decisions.

The security design principles in Table 10.4 are built on the idea of sim-
plicity and restriction [15].

10.4.2.2 Security Patterns

A security pattern is a well-understood solution to a recurring security prob-
lem, and encourages effective reuse for building in robustness. Software design
patterns have become widely accepted after the Gang of Four published their
very influential book [16] on this topic in the middle of the nineties, and there
exists a vast number of patterns for software development; see, for example,
Hillside4 for an extensive online library. However, while some security pat-
terns take the form of traditional design patterns, not all of them are design
patterns.

Security patterns are usually divided into different types and categories,
typically:

• Structural, behavioral, and creational security patterns encompass design
patterns, such as those used by the Gang of Four. They include diagrams
on relationships between entities and descriptions of interaction and object
creation.

• Available System patterns is a subtype of structural patterns and they facili-
tate construction of systems which provide predictable uninterrupted access
to the services and resources they offer to users.

• Protected System patterns is another sub-type of structural patterns that
facilitate construction of systems which protect valuable resources against
unauthorized use, disclosure, or modification.

• Antipatterns are ways of not doing things based on things that have failed
in the past or invalid assumptions. An antipattern should also include a
solution, for example, reference to a working pattern.

• A mini-pattern is a shorter, less formal discussion of security expertise in
terms of just a problem and its solution. Programming language-specific
patterns are also known as idioms.

• Procedural patterns are patterns that can be used to improve the process for
development of security-critical software. They often impact the organiza-
tion or management of a development project and are therefore not security
design patterns.

Table 10.5 gives examples of common security patterns, their type, and a short
description.

4http://www.hillside.net/patterns/.

A Lightweight Approach to Secure Software Engineering 201

TABLE 10.4
Examples of design principles

Principle Definition

Principle of Least
Privilege

The principle of least privilege
states that a subject should be given
only those privileges that it needs.

Principle of
Fail-Safe Defaults

The principle of fail-safe defaults
states that, unless a subject is given
explicit access to an object, it
should be denied access.

Principle of
Economy of
Mechanism

The principle of economy of
mechanism states that security
mechanisms should be as simple as
possible.

Principle of
Complete
Mediation

The principle of complete mediation
requires that all accesses to objects
be checked to ensure that they are
allowed.

Principle of Open
Design

The principle of open design states
that the security of a mechanism
should not depend on the secrecy of
its design.

Principle of
Separation of
Privilege

The principle of separation of
privilege states that a system should
not grant permission based on a
single condition.

Principle of Least
Common
Mechanism

The principle of least common
mechanism states that mechanisms
used to access resources should not
be shared.

Principle of
Psychological
Acceptability

The principle of psychological
acceptability states that security
mechanisms should not make the
resource more difficult to access
than if the security mechanisms
were not present.

202 A Multidisciplinary Introduction to Information Security

TABLE 10.5
Security pattern examples

Name(s) Type Abstract

Single access
point, Login
window, One way
in, Guard door,
Validation screen

Protected system
pattern

Providing a security module and a
way to log into the system. Set up
only one way to get into the system,
and if necessary, create a mechanism
for deciding which subapplications to
launch.

Account lockout,
Disabled
password

Behavioral pat-
tern

Account lockout protects customer
accounts from automated
password-guessing attacks, by
implementing a limit on incorrect
password attempts before further
attempts are disallowed.

Standby,
disaster recovery
backup site

Available system
pattern

Structures a system so that the
service provided by one component
can be resumed from a different
component.

Maginot line Antipattern
To use a security solution that
worked in the past, but is now
outdated.

Share
responsibility for
security,
Nonseparation of
duty

Procedural pat-
tern

This pattern makes all developers
building an application responsible
for the security of the system.

A Lightweight Approach to Secure Software Engineering 203

10.4.3 Threat Modeling and Security Design Review

Threat modeling is an iterative process, continuously revisited throughout the
software life cycle. We introduced threat modeling/analysis in Section 10.3 as
an important part of the requirements phase, and we return to it here.

At this point, we know more about the system we are building than at the
beginning of the requirements phase, and we use this knowledge to refine our
threat models, identifying what functionality and which assets an attacker can
take advantage of. The software design should be evaluated from an attacker’s
point of view. This process will result in a threat model document that can
be used by developers to identify which threats are present, and which steps
should be taken to mitigate the associated risks.

An architecture and design review helps you validate the security-related
design features of your application before you start the development phase.
This allows you to identify and fix potential vulnerabilities before they can be
exploited and before the fix requires a substantial re-engineering effort.

Security design review is a technique that can be used to discover vulner-
abilities that have been overlooked earlier in the design phase of the project.
Dowd et al. [17] suggest identifying the trust boundaries in the design, and
identifies six main elements to review for each boundary; authentication, au-
thorization, accountability, confidentiality, integrity, and availability. These
ideas are similar to using checklists during the security design review. Ta-
ble 10.6 shows a simplified version of a checklist focused on Web application
security [18].

10.4.4 Putting It into Practice – More LyeFish

We now assume that we have performed asset identification and security re-
quirements elicitation for the LyeFish tool and proceed with secure design.

10.4.4.1 Applying Security Design Principles

Memorizing all design principles you come over is of little use. Principles are
a type of knowledge that can only be fully understood through experience. In
order to gain such knowledge, we recommend the following approach:

• Start with a few principles at a time. Do not try to comprehend them all at
a time. You can, for instance, try to pick out the three most important ones
for your current project.

• Try to understand the reason for the principles. It can slow down develop-
ment if you apply principles just for the sake of it, without understanding
why. It can even lead to whole layers of your application that serve no real
purpose. Once you understand the reasoning behind the principles, it be-
comes much easier to choose how and where to apply principles.

• The most important thing is that you try - the rest comes with experience.

204 A Multidisciplinary Introduction to Information Security

TABLE 10.6
Checklist for security review

In
p

u
t

va
li

d
a
ti

o
n All entry points and trust boundaries are identified by the

design.

Input validation is applied whenever input is received from
outside the current trust boundary.
The design addresses potential SQL injection issues.

The design addresses potential cross-site scripting issues.

The design does not rely on client-side validation.

A
u

th
en

ti
ca

ti
o
n The design partitions the Web site into public and restricted

areas.

The design identifies the mechanisms to protect the creden-
tials over the wire (SSL, encryption, and so on).
Account management policies are taken into consideration
by the design.
The design ensures that minimum error information is re-
turned in the event of authentication failure.

The identity that is used to authenticate with the database
is identified by the design.
The design adopts a policy of using least-privileged accounts.

A
u

th
or

iz
at

io
n The role design offers sufficient separation of privileges (the

design considers authorization granularity).
The design identifies code access security requirements. Priv-
ileged resources and privileged operations are identified.
All identities that are used by the application are identified
and the resources accessed by each identity are known.

S
en

si
ti

ve
d

at
a

The design identifies the methodology to store secrets se-
curely.
The design identifies protection mechanisms for sensitive
data that are sent over the network.
Secrets are not stored unless necessary.

C
ry

p
to

-
gr

ap
h
y

The methodology to secure the encryption keys is identified.

Platform-level cryptography is used and it has no custom
implementations.
The design identifies the key recycle policy for the applica-
tion.

E
x
ce

p
ti

on
s The design outlines a standardized approach to structured

exception handling across the application.

The design identifies generic error messages that are re-
turned to the client.

A
u

d
it

in
g

&
lo

gg
in

g

The design identifies the level of auditing and logging nec-
essary for the application and identifies the key parameters
to be logged and audited.
The design identifies the storage, security, and analysis of
the application log files.

A Lightweight Approach to Secure Software Engineering 205

You will make mistakes, but your programs should still be superior to the
ones you developed before you started thinking about principles.

For the LyeFish tool, it is natural to start with the first principle in Table
10.4, the principle of least privilege. We can apply this on several levels, from
making sure that the LyeFish application can run as an unprivileged process,
to not granting various users access to more information than they need. The
principle of fail-safe defaults also applies, since we don’t want, for example,
errors in the application to give external users direct access to privileged web
server content.

10.4.4.2 Making Use of Security Design Patterns

As already mentioned, several existing security patterns can be found in books,
articles, and on the Web. The challenge is making these more readily available
for developers, primarily from within their development tools. We see proce-
dural patterns more as guidelines, so for the design phase, we focus on design
patterns for security. We have defined two practical uses for these, namely:

• Using a security design pattern as a starting template when creating new
design documents.

• Applying security design patterns to your existing design documents.

Several of the leading CASE tools support the instantiation of diagrams
based on design patterns. This functionality allows you to create design stubs,
making it faster and easier to make use of the proven good solutions. How-
ever, security design patterns are unfortunately not found among the default
patterns for most of these tools.

For LyeFish, the two first entries in Table 10.5 are clearly relevant, in that
we have the opportunity of logging into the system, and want to be able to
lock out accounts that are targeted for brute-force password guessing.

10.4.4.3 Make Use of Tools for Threat Modeling

SODA threat modeling during design builds on the initial threat modeling
from the requirements phase. This basis should be used as input to help select
specific security design principles, guidelines, and patterns. To aid this process,
it can be useful to use tools such as SeaMonster,5 which supports several
types of threat modeling notations/artifacts. Throughout the design phase,
threat modeling should be continuously revisited in order to identify new
threats or to mitigate the existing ones. This way, the threat model itself
can be used as documentation for the security activities and countermeasures
applied during development life cycle. SeaMonster facilitates reuse and sharing
of threat models, and supports linking to external resources for information
about threats and attacks (compliant with SODA assumption 2).

5http://sourceforge.net/projects/seamonster/.

206 A Multidisciplinary Introduction to Information Security

10.4.4.4 Performing Security Review

A security and architecture review should be performed by someone else other
than the designers of the target system. If there exists a dedicated security
team or someone with that assigned role, that would be the obvious choice,
but such a review could also be performed by regular designers and developers
(with a little help). The main point is to have unbiased eyes look at and
question the design artifacts that have been produced so far.

If there exist architecture and design documentation, a good start would
be to go through these and see which security features are reflected here. The
next step would then be to go through your findings with one of the designers
to check whether your results match the intention.

If the documentation is sparse, outdated or nonexisting, you should sepa-
rately interview two or more designers about the security features and compare
their responses. If there are many differences, put the designers together and
go through the mismatches one by one.

You do not have to wait until the end of a phase to perform a security
review. A review can (and should) be performed early and several times in
order to detect design flaws as soon as possible.

10.5 Testing for Software Security

Traditional software testing is mainly an exercise in Quality Assurance; “Does
the application meet all the [functional] requirements [. . .] ?”[19]. If the re-
quirements say “To get B, input A,” the tester will input A, and if B is output,
the test is categorized a success. Software security testing is more about test-
ing things that shouldn’t happen, however, and since the variations of possible
incorrect input are practically infinite, you can never test all permutations.
The security testing phase of SODA thus focuses on penetration testing of
applications or parts of applications before deployment.

10.5.1 Background

According to McGraw [6], it is necessary to involve two different security test-
ing approaches: Functional and adversarial (see Table 10.7). As mentioned,
functional security testing of security mechanisms is not a controversial strat-
egy, but many run-of-the-mill applications will have very few (or none) of these
mechanisms, rendering the functional security testing a relatively manageable
task. Since our focus is security testing of these “average” applications, we
are thus primarily interested in the adversarial approach. Techniques for soft-
ware security testing are thoroughly covered by several books [19, 20, 21, 22].
Several tools have also been developed to help testers, for example, tools that

A Lightweight Approach to Secure Software Engineering 207

TABLE 10.7
Approaches to security testing [6]

No. Approach Why

1 Functional security testing

To determine whether security mecha-
nisms such as access control and cryp-
tography settings are implemented and
configured according to the require-
ments.

2 Adversarial security testing

To determine whether the software con-
tains vulnerabilities by simulating an
attacker’s approach – based on risk-
based security testing.

focus on error handling, monitoring of environmental interaction, and tools
for intercepting and modifying traffic between server and client.

Software security testing tools and techniques have to constantly evolve to
be able to detect vulnerabilities that can be utilized in new types of attacks.
But there are even bigger challenges:

• Security testing is often neglected in development projects.

• When penetration testing is performed, software development organizations
tend to treat the results as complete bug reports – when each item on the
list has been crossed off, the system is considered “secure.”

• There is seldom any feedback loop to facilitate learning from the penetration
testing process to the development organization, which leads to the same
type of software vulnerabilities being introduced in later versions of the
software.

Security testing is a typical last-minute activity, and the resources avail-
able are scarce. Risk-based testing, which means focusing the testing effort on
critical functions, therefore becomes important. Some types of security vul-
nerabilities are more serious and/or more common than others, and statistics
and rankings like OWASP Top 10 and the SANS Top 25 can be used to focus
testing. Some applications, or parts of applications, can also be more likely to
cause problems:

• The highest risk is experienced by web facing systems, large code size ap-
plications, and new applications.

• Complexity may be an indicator for future security problems, using tools to
measure cyclomatic complexity.

• Error handling routines should be an important focus in testing since many

208 A Multidisciplinary Introduction to Information Security

security failures occur in stressed environments. This is often neglected dur-
ing testing because it is difficult to simulate such conditions.

In general, we advocate threat modeling as a basis for risk-based testing,
focusing on application entry points. Traditional black box testing usually
takes an outside-in approach where the testers do not have previous knowledge
of the software to be tested. Risk-based security testing, on the other hand,
implies that the test process is driven by some form of risk-related input,
where the risk evaluation is based on previous knowledge of the software. The
risk management process gives an indication of where an attack on the newly
developed software is most likely to succeed, thus testing can be focused on
the most vulnerable code.

Evidence for the benefits of risk-based testing is provided by Potter and
McGraw [23]. In a case study, they did both functional and risk-based testing
on smart card technologies. Via the functional tests, they found that security
mechanisms often were satisfactorily implemented with respect to the defined
requirements. However, when the units that previously passed the functional
test were exposed to a risk-based security testing approach, all of them failed!
These findings emphasize the importance of structuring and prioritizing the
security tests based on risk. However, Potter and McGraw also express that
risk-based security testing relies on expertise and experience, something that
may be a problem in small organizations since most regular developers are
not primarily interested in security issues.

10.5.2 The Software Security Testing Cycle

The software security testing cycle differs from the traditional testing cycle
primarily in one aspect: Security testing does not have a clear-cut fulfillment
criterion, and is therefore open-ended – we can go on testing for weeks, and
still not be done. Furthermore, there are frequently limited resources available
for testing, and this results in a need to prioritize testing efforts. Thus, the
first step in the cycle as illustrated in Figure 10.6 is to define the focus and
scope of the impending security testing activity.

We acknowledge the importance of taking a risk-based approach to security
in all software development phases, including software security testing. This
is even more important in a lightweight approach, where there is no way all
security aspects can be fully addressed and tested. Our focus is on giving
concrete guidelines as to how risk-based security testing can be achieved in
ordinary software engineering projects. In Section 10.5.3, we describe how
concrete results from security techniques applied in the requirements, design,
and implementation phases can be used as a basis for deciding what to focus
on in testing activities. These risk management activities that are tied to the
specific application developed should be used together with known risk factors
such as complex components, web-facing components, error handling, and so
forth. In addition, it should be taken into account where we typically have
failed in the past.

A Lightweight Approach to Secure Software Engineering 209

FIGURE 10.6
Software security testing cycle.

As described in Section 10.5.1, various testing techniques and tools are
readily available, and we therefore do not focus on the second and third step
of the testing cycle, that is, finding and fixing bugs. Instead, we choose to
stress that it does not stop here! For each vulnerability that is discovered by
testing, special care should be taken to verify whether similar vulnerabilities
exist in other parts of the same application, and root causes identified. The
results from security testing must be used to improve software development,
in all phases, to make sure the same mistakes are not repeated in the next
version or the next project.

10.5.3 Risk-Based Security Testing

Artifacts relevant to a risk-based testing will be produced in all phases of
a software development life cycle. The lightweight techniques assisting the
requirements and design phases are no different, and they output artifacts
such as lists of assets, security requirements, and threat models.

The following sections describe how each of these help targeting the secu-
rity testing to maximize the return on the testing effort.

Assets and Security Requirements Getting access to (or otherwise at-
tacking) the important assets identified as part of the security requirements
elicitation should be a main focus in testing activities. The security require-
ments will mainly give input to the functional security testing activities, but
will also point to high-risk areas that should be considered for adversarial
security testing.

Exploiting Threat Models in Security Testing Threat models will pro-
vide the most important input to the adversarial security testing, and help
to visualize important parts of an application’s attack surface; thus pointing

210 A Multidisciplinary Introduction to Information Security

to the areas in the code that are most exposed to attacks. Testing must
be performed on these areas to ensure that the most likely attacks are not
achievable.

Static Code Analysis Results Ideally, vulnerabilities reported by the
static analysis tools are fixed immediately. However, it is common knowledge
that these tools are not able to discover every possible vulnerability. Code
segments where the returned number of vulnerabilities are above average
may indicate either that the programmer has done a poor job, or that it was
a particularly difficult segment to code. In both cases, one should expect
more vulnerabilities to lie dormant, and thus these parts should be thor-
oughly tested. Also note that found vulnerabilities (“positives”) sometimes
are erroneously classified as “false positives.”

Choice of Language Programming languages have different inherent secu-
rity properties, and thus choice of language will influence the testing [24].
Since, for example, C/C++ is vulnerable to buffer overflows, this is some-
thing you would want to test for; however, this would not be relevant if, for
example, Java, Pascal, or Ada were the programming language of choice.

It is also possible to take this idea a step further and look at which devel-
opment environments that are used. Content Management Systems (CMS),
for instance, are popular tools for web application development, and several
of these have been reported to contain vulnerabilities. By searching through
vulnerability databases (see below) for your development environment, a list
of already known vulnerabilities can be found. These vulnerabilities should
be tested to determine whether your application is at risk.

Dynamic Code Analysis and Fuzzing There are also various dynamic
code analysis tools on the market, which can be useful if the development
team has access to them. In particular, fuzzing tools [25] can be a golden op-
portunity to narrow the “infinite permutation gap” mentioned earlier (i.e.,
that testers can never manually test all possible combinations of input to
a given program). Fuzzing is a modern variant of what used to be called
“the kindergarten test”6 in some circles. The fuzzer application will input
random data via various interfaces in an automated fashion, and will record
any unexpected behavior and/or failures.

10.5.4 Managing Vulnerabilities in SODA

Information about publicly known vulnerabilities are available at several
sources like the Security Focus vulnerability database and the associated
mailing list Bugtraq, the National Vulnerability Database hosted by NIST
and sponsored by the Department of Homeland Security/US-CERT, and the

6Type random gibberish at the prompt, and see what happens.

A Lightweight Approach to Secure Software Engineering 211

Open Source Vulnerability Database. Common Vulnerabilities and Exposures
(CVE), hosted by the MITRE Corporation, provides common identifiers for
vulnerabilities and exposures. For a more thorough treatment of public vul-
nerability repositories and mailing lists, see Ardi et al.[26].

Knowledge about publicly known vulnerabilities is important and can be
utilized by software development organizations. Different organizations have
different characteristics, however; culture, knowledge level, or special prop-
erties of the applications being developed can be the reason why some vul-
nerabilities are more common than others. Knowledge of what are the most
commonly introduced vulnerabilities can be used to focus testing, but also to
improve the software development process.

By analyzing vulnerabilities, it is possible to understand what the organi-
zation is doing wrong, and compensate through the use of secure development
techniques. To better enable learning from our own mistakes, we suggest orga-
nizing information about all vulnerabilities found in a vulnerability repository.
This repository should include vulnerabilities found during security testing,
but also design flaws found during design review, coding mistakes found by
static analysis tools or code reviews (if applied), and vulnerabilities found
after deployment. It is important to learn from vulnerabilities regardless of
when they are detected.

The goals for the vulnerability repository include:

• Improve the ability to produce secure software: By using the vulner-
ability repository actively to guide the security development process in the
organization, it should be possible to reduce the number of vulnerabilities
in software, especially vulnerabilities that have traditionally been common
or have been given focus because of the high risk involved.

• More cost-effective handling of vulnerabilities: Focus on common vul-
nerabilities should result in these vulnerabilities being avoided altogether or
detected at earlier stages where the cost of fixing vulnerabilities is at a min-
imum.

• Measure progress: The vulnerability repository can be used to measure
progress, that is, whether vulnerabilities are detected sooner in the devel-
opment process, or whether the number of vulnerabilities are reduced. Such
measurements can be a motivation factor. Note however that too much focus
on reduced number of vulnerabilities can result in less effort when it comes
to finding vulnerabilities, and thereby reduced quality of testing. Finding
many vulnerabilities is a good thing and should also be appreciated.

Information from the vulnerability repository should be utilized at all
stages of the development process in order to avoid or detect the vulnera-
bilities as early as possible:

• Requirements engineering: Vulnerabilities that are common and poten-
tially high risk can be used as input to general software development policies

212 A Multidisciplinary Introduction to Information Security

that apply to all applications developed by the organization. Example: All
applications shall have proper input handling. These general policies will
then be used as a basis for security requirements together with customer
requirements, asset identification, and threat modeling activities [2].

• Design: Knowledge of common vulnerabilities can guide software designers
to make more secure design choices, like choosing appropriate security design
guidelines, principles, and patterns. As an example: Statistical evidence that
an organization’s software is susceptible to SQL injection attacks may be
used as an argument to include the Intercepting Validator security pattern
defined by Steel et al. [27]. A design review should also profitably be based
on past experiences.

• Implementation: The choice of language and the use of frameworks can
influence which types of implementation vulnerabilities that are common.
If large groups of vulnerabilities can be removed by changing, for example,
programming language this should be taken into account when making such
decisions. Knowledge of common vulnerabilities can also be used to focus
code reviews, if the organization is performing such reviews. Finally, knowl-
edge of common implementation errors can be used to tune the rule-sets
used in the static code analysis tools.

• Testing: Information on where we typically have failed in the past should
be used as input when prioritizing testing efforts. Concrete vulnerabilities as
well as statistics on which vulnerability categories are most common should
be utilized. This type of information can be obtained from the suggested
vulnerability repository.

If lack of knowledge and training is identified as a cause for important
groups of vulnerabilities, this information should be used to focus training
initiatives. Concrete vulnerabilities should then be utilized for motivation.

To limit the work related to registering and follow-up of vulnerabilities, we
suggest to strive toward only registering the information you intend to use.
We suggest the following information as a minimum:

• Date – to be able to measure progress over time.

• Vulnerability category – to be able to know what areas to focus on in im-
provement activities.

• Where – to be able to know what portions of the code and what aspects of
the application to focus on when improving security development techniques.

• In which phase and with which technique it was detected – to make sure the
vulnerability is tested for in the future and to be able to see whether the
same type of issue is detected earlier in future projects.

• Root cause – to use as input to improve the security development process.

A Lightweight Approach to Secure Software Engineering 213

• Risk – to prioritize what to focus on, but also to see if the risk posed by the
vulnerabilities detected decreases over time.

• Countermeasure – to learn how this type of vulnerability can be prevented
or avoided, for example, by referring to a relevant security pattern.

In addition, it may be of interest to record who introduced the vulnerability
to allow each developer to learn directly from their own mistakes. However, it
is important to consider possible side effects, such as employees feeling they
are being publicly embarrassed and become uncomfortable with their working
environment.

For the registration of vulnerabilities, we suggest to utilize predefined cat-
egories to ease aggregation and searchability of information, and use free text
for details. Regarding vulnerability category, it is advantageous to use existing
vulnerability taxonomies like the 7+1 kingdoms defined by Tsipenyuk et al.
[28], and detail these if necessary. For describing risk it is possible to utilize
the Common Vulnerability Scoring System [29]. By representing the vulnera-
bilities in a standard way, it will be easier to share vulnerability information
in an anonymized and generalized form, so that they can be integrated in a
public or federated repository.

10.5.5 Example – Testing LyeFish

We will now apply the risk-based testing approach to the LyeFish tool. In
Table 10.3, we found that the administrator account and the web server itself
were the highest-ranked assets of LyeFish. The administrator login interface
will therefore be a logical starting point for adversarial testing.

The attack tree in Figure 10.4 next practically gives us a step-by-step
procedure for attacking the web server. There are also automated tools that
can be wielded against particular web servers. We can also point a fuzzer at
the LyeFish web interface, and leave it running for a given time, recording all
identified problems.

Finally, identified vulnerabilities (i.e., tests that compromise security) are
recorded in the vulnerability repository.

10.6 Summary

With an increasing number of threats to software, security must be consid-
ered from the very beginning of every software development project. However,
most software security tools and methodologies have been created with tradi-
tional security-critical projects in mind. With security becoming a concern in
average projects, these methods are not always appropriate, especially for de-
velopers without the proper security background. Our motivation has been to

214 A Multidisciplinary Introduction to Information Security

establish a lightweight approach that should be used in every project, without
consuming more resources than necessary.

This chapter has presented a lightweight approach to identifying assets,
eliciting security requirements, performing secure software design, and finally
security testing. Secure coding could have been a chapter of its own, but the
interested reader is encouraged to explore this further in the references [5, 6]).

10.7 Further Reading and Web Sites

The SHIELDS project worked on detecting known security vulnerabilities from
within design and development tools, and the project results are archived at
http://shields-project.eu. This web site also contains many other useful
links.

There are a number of databases of software vulnerabilities available
on the internet; we consider the most important to be the National Vul-
nerability Database (http://nvd.nist.gov/), the Open Source Vulnerability
Database (http://osvdb.org/), and the Common Vulnerabilities and Ex-
posures (http://cve.mitre.org). In addition, there is a lot of useful, al-
though less structured, information available in the Security Focus vulnerabil-
ity Database at http://www.securityfocus.com/archive/1.

The Open Web Application Security Project maintains the “OWASP Top
10” list of the ten most critical web application security risks at http://

www.owasp.org/index.php/OWASP\Top_Ten_Project. This list is augmented
by the “CWE/SANS Top 25‘” most dangerous software errors at http://

www.sans.org/top25-software-errors/. Combined, the OWASP Top 10
and the CWE/SANS Top 25 represent a minimum baseline that all software
engineering projects should be aware of in order to avoid embarrassing security
errors.

Bibliography

[1] Martin Gilje Jaatun and Inger Anne Tøndel. Covering your assets in soft-
ware engineering. In The Third International Conference on Availabil-
ity, Reliability and Security (ARES 2008), pages 1172–1179, Barcelona,
Spain, 2008.

[2] Inger Anne Tøndel, Martin Gilje Jaatun, and Per H̊akon Meland. Security
Requirements for the Rest of Us: A Survey. IEEE Software, 25(1), 2008.

A Lightweight Approach to Secure Software Engineering 215

[3] Per H̊akon Meland and Jostein Jensen. Secure software design in prac-
tice. In Availability, Reliability and Security, (ARES 2008). Third Inter-
national Conference on, pages 1164–1171, Barcelona, Spain, March 2008.

[4] Inger Anne Tøndel, Martin Gilje Jaatun, and Jostein Jensen. Learn-
ing from software security testing. In Software Testing Verification and
Validation Workshop, 2008, ICSTW’08, pages 286–294, April 2008.

[5] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft
Press, 2nd edition, 2003.

[6] Gary McGraw. Software Security–Building Security In. Addison-Wesley,
2006.

[7] Chauncey E. Wilson. Brainstorming pitfalls and best practices. interac-
tions, 13(5):50–63, 2006.

[8] Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements
with misuse cases. Requirements Engineering, 10(1):34–44, 2005.

[9] Johan Peeters. Agile Security Requirements Engineering. In Proceedings
of The 2005 Symposium on Requirements Engineering for Information
Security (SREIS), 2005.

[10] Gustav Boström, Jaana Wäyrynen, Marine Bodén, Konstantin Beznosov,
and Philippe Kruchten. Extending XP practices to support security re-
quirements engineering. In SESS ’06: Proceedings of the 2006 Inter-
national Workshop on Software Engineering for Secure Systems, pages
11–18, New York, NY, USA, 2006. ACM Press.

[11] Vidar Kongsli. Towards agile security in web applications. In Companion
to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06, pages 805–808, New
York, NY, USA, 2006. ACM.

[12] Bruce Schneier. Attack Trees–Modeling security threats. Dr. Dobb’s
Journal, July 2001.

[13] Frank Swidersky and Window Snyder. Threat Modeling. Microsoft Pro-
fessional, 2004.

[14] Michael Howard and Steve Lipner. The Security Development Lifecycle.
Microsoft Press, 2006.

[15] M. A. Bishop. Computer Security: Art and Science. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1995.

216 A Multidisciplinary Introduction to Information Security

[17] M. Dowd, J. McDonald, and J. Schuh. The Art of Software Security
Assessment. Addison-Wesley, 2007.

[18] J. D. Meier. Web application security engineering. IEEE Security and
Privacy, 4(4):16 – 24, 2006.

[19] Chris Wysopal, Lucas Nelson, Dino Dai Zovi, and Elfriede Dustin. The
Art of Software Security Testing: Identifying Software Security Flaws.
Symantec Press, 2006.

[20] James A. Whittaker and Herbert H. Thompson. How to Break Software
Security. Addison-Wesley, 2003.

[21] Greg Hoglund and Gary McGraw. Exploiting Software: How to Break
Code. Addison-Wesley, 2004.

[22] Tom Gallagher, Lawrence Landauer, and Bryan Jeffries. Hunting Security
Bugs. Microsoft Press, 2006.

[23] Bruce Potter and Gary McGraw. Software security testing. Security &
Privacy Magazine, IEEE, 2(5):81–85, Sept.-Oct. 2004.

[24] K. M. Goertzel, T. Winograd, H. L. McKinley, L. Oh, M. Colon,
T. McGibbon, E. Fedchak, and R. Vienneau. Software Security Assur-
ance. Technical report, Information Assurance Technology Analysis Cen-
ter and Data (IATAC) and Analysis Center for Software (DACS), 2007.

[25] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of
the reliability of UNIX utilities. Communications of the ACM, 33(12):32–
44, December 1990.

[26] Shanai Ardi, David Byers, Per H̊akon Meland, Inger Anne Tøndel, and
Nahid Shahmehri. How can the developer benefit from security modeling?
In The Second International Conference on Availability, Reliability and
Security (ARES 2008), Vienna, Austria, 2007.

[27] C. Steel, R. Nagappan, and R. Lai. Core Security Patterns: Best Practices
and Strategies for J2EE(TM), Web Services, and Identity Management.
Prentice Hall, 2005.

[28] K. Tsipenyuk, B. Chess, and G. McGraw. Seven pernicious kingdoms:
a taxonomy of software security errors. Security & Privacy Magazine,
IEEE, 3(6):81–84, Nov.-Dec. 2005.

[29] Peter Mell, Karen Scarfone, and Sasha Romanosky. Common vulnera-
bility scoring system. Security & Privacy Magazine, IEEE, 4(6):85–89,
Nov.–Dec. 2006.

