Presented at the First IEEE Workshop on Security Testing,
Lillehammer, Norway, April 2008
http://ieeexplore.ieee.org/document/4567022/

Learning from Software Security Testing

Inger Anne Tondel, Martin Gilje Jaatun and Jostein Jensen
SINTEF Information and Communication Technology
Department of Software Engineering, Safety and Security
{inger.a.tondel, martin.g.jaatun, jostein.jensen}@ sintef.no

Abstract

Software security testing tools and methodologies are
presently abundant, and the question no longer seems to
be “if to test” for security, but rather “where and when to
test” and “then what?”. In this paper we present a review of
security testing literature, and propose a software security
testing scheme that exploits an intra-organisational reposi-
tory of discovered vulnerabilities that closes the loop after
the testing of one application is complete, providing useful
input to the next application to be tested.

1 Introduction

Few practitioners would argue against the value of per-
forming testing of security software, or testing security
mechanisms in general software products. However, se-
curity vulnerabilities have a nasty habit of cropping up in
the most unlikely places! A decade ago, it might not have
been unreasonable to assume that a comment field on a
blog pretty much could fend for itself, securitywise. Today,
we know that attacks such as SQL injection and Cross-Site
Scripting turn such banalities into the proverbial barn door.

The coming of the internet age should have led develop-
ers to collectively acknowledge that all applications need to
be secure, but this has not been the case. New security vul-
nerabilities are still being discovered in internet-accessible
applications at a steady pace, and it seems as though the av-
erage developer not only suffers from a lack of interest in se-
curity [1,2], but also is incapable of learning from past mis-
takes [3]. In our opinion, there is thus an increased need of
security also in the average software development project,
and we have argued for lightweight techniques that are suit-
able for ensuring security in the asset identification [4], re-
quirements elicitation [5], and design [6] phases of software
development. To add another arrow to our quiver, we will
in the following present an approach to software security
testing that is suitable for use in all software development
projects, and which facilitates learning in order to prevent

developers from making the same mistakes over and over
again.

The suggested testing approach complements the risk-
based activities of the earlier software development phases
of the SODA! framework [7]:

e Security requirements are identified based on high
level security objectives, asset identification and high
level modelling of threats towards the most important
assets.

e Design guidelines, principles and patterns are, together
with threat modelling, actively used to create a security
architecture. A security review of the design is then
performed.

e Security is taken into account when choosing program-
ming language. Static code analysis and, if possible, a
lightweight code review of the most critical parts of
the application are then performed as part of the im-
plementation phase.

Traditional software testing is mainly an exercise in Quality
Assurance; “Does the application meet all the [functional]
requirements [...] 7 [8]. If the requirements say “To get
B, input A,” the tester will input A, and if B is output, the
test is categorised a success. Software security testing is
more about testing things that shouldn’t happen, however,
and “the QA process might not be broad enough to address
the true range of potentially malicious input” [9]. Further-
more, Chess and West state quite categorically that “it is
almost impossible to improve software security merely by
improving quality assurance” [10]. We have tried to heed
this advice, and thus the security testing phase of SODA
focuses on penetration testing of applications or parts of ap-
plications before deployment.

The rest of this paper is structured as follows: Section 2
presents previous work on software security testing, and in
section 3 we outline the security testing cycle and identify

I'Secure sOftware Development frAmework

mgj
Text Box
Presented at the First IEEE Workshop on Security Testing, Lillehammer, Norway, April 2008
http://ieeexplore.ieee.org/document/4567022/

where our focus lies. In section 4 we present our interpre-
tation of the term “risk-based security testing”, while sec-
tion 5 sketches how a vulnerability repository may facilitate
intra-organisational learning to prevent security vulnerabil-
ities. We discuss our contribution in section 6, and offer
conclusions and directions for further work in section 7.

2 Background

According to McGraw [11], it is necessary to involve two
different security testing approaches: Functional and adver-
sarial (see Table 1). As mentioned, functional security test-
ing of security mechanisms is not a controversial strategy,
but many run-of-the-mill applications will have very few (or
none) of these mechanisms, rendering the functional secu-
rity testing a relatively manageable task. Since our focus
is security testing of these “average” applications, we are
thus primarily interested in the adversarial approach. Tech-
niques for software security testing are thoroughly covered
by several books. E.g., Whittaker and Thompson [12] de-
scribe nineteen attacks that can be used to break software
security, and Andrews and Whittaker [13] list 24 attacks for
breaking web software; Hoglund and McGraw [14] concen-
trate on 49 attack patterns when describing how to exploit
software; and Gallagher et al. [15] outline attack techniques
that are summarised in a Security Test Cases Cheat Sheet.
Several tools have also been developed to help testers, e.g.
tools that focus on error handling (e.g. Holodeck?), mon-
itoring of environmental interaction (e.g. Process Moni-
tor’ and AppSight* — Regmon and Filemon (now Process
Monitor) and AppSight are described as promising tools by
Thompson [16]) and tools for intercepting and modifying
traffic between server and client (e.g. Paros®). For a more
thorough overview of useful tools, see Gallagher et al. [15]
and Andrews and Whittaker [13].

Software security testing tools and techniques have to
constantly evolve to be able to detect vulnerabilities that can
be utilised in new types of attacks [15]. But there are even
bigger challenges:

e “One problem with almost all kinds of security testing
[...] is the lack of it.” [17]

e “Software development organizations tend to regard
[penetration test] results as complete bug reports —
thorough lists of issues to address to secure the sys-
tem.” [18]

e “Perhaps the most common problem with the soft-
ware penetration testing process is the failure to iden-
tify lessons to be learned and propagated back into the

Zhttp://www.sisecure.com/holodeck/index.shtml
3http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
“http://www.identify.com/

Shttp://WWW.parosproxy.org

organization.” [18] “Later versions of software often
contain vulnerabilities that exploit the same character-
istics or conditions that were exploited by attackers in
the earlier versions.” [19]

Security testing is a typical last-minute activity, and the
resources available scarce. Risk-based testing, defined by
Amland [20] as “to focus testing and spend more time on
critical functions”, therefore becomes important. Some
types of security vulnerabilities are more serious and/or
more common than others, and statistics and rankings like
OWASP Top 10° can be used to focus testing. Some appli-
cations, or parts of applications, can also be more likely to
cause problems:

e In a presentation at the MetriCon 2.0 workshop [21],
Dalci explained that the systems that tend to have the
highest risk are web facing systems, large code size
applications and new applications.

e Jaquith [22] suggests using complexity as an indicator
for future security problems, using tools to measure
cyclomatic complexity.

e Thompson et al. [23] state that error handling routines
should be an important focus in testing since “many
security failures occur in stressed environments, which
appear in the field, but are often neglected during test-
ing because of the difficulty to simulate these condi-
tions”.

More generally, both Gallagher et al. [15] and Wysopal et
al. [8] point to threat modelling as a basis for risk-based
testing. In particular, they suggest to focus on application
entry points. This is also supported by McGraw [11] who
suggests risk-based testing to provide “...a higher level of
software security assurance than is possible with classical
black box testing”. Traditional black box testing usually
takes an outside-in approach where the testers do not have
previous knowledge of the software to be tested. Risk-based
security testing, on the other hand, implies that the test pro-
cess is driven by some form of risk-related input, where the
risk evaluation is based on previous knowledge of the soft-
ware. The risk management process gives an indication of
where an attack on the newly developed software is most
likely to succeed, thus testing can be focused on the most
vulnerable code.

Evidence for the benefits of risk-based testing is pro-
vided by Potter and McGraw [17]. In a case study, they did
both functional and risk-based testing on smartcard tech-
nologies. Via the functional tests, they found that security
mechanisms often were satisfactorily implemented with re-
spect to the defined requirements. However, when the units
that previously passed the functional test were exposed to

Shttp://www.owasp.org/index.php/OWASP_Top_Ten_Project

No. Approach

Why

To determine whether security mechanisms, such
as access control and cryptography settings are

1 Functional security testin . .
y & implemented and configured according to the re-
quirements.
To determine whether the software contains vul-
2 Adversarial security testing | nerabilities by simulating an attacker’s approach -

based on risk-based security testing.

Table 1. Approaches to security testing [11]

a risk-based security testing approach, all of them failed!
These findings emphasise the importance of structuring and
prioritising the security tests based on risk. However, Pot-
ter and McGraw also express that risk-based security testing
relies on expertise and experience, something that may be a
problem in small organisations since most regular develop-
ers are not primarily interested in security issues.

3 The Software Security Testing Cycle

The software security testing cycle differs from the tradi-
tional testing cycle primarily in one aspect: Security testing
does not have a clear-cut fulfilment criterion, and is there-
fore open-ended — we can go on testing ’till the cows come
home, and still not be done [16]. Furthermore, there are
frequently limited resources available for testing, and this
results in a need to prioritise testing efforts. Thus, the first
step in the cycle as illustrated in Figure 1 is to define the
focus and scope of the impending security testing activity.

We acknowledge the importance of taking a risk based
approach to security in all software development phases,
including software security testing. This is even more im-
portant in a lightweight approach, where there is no way all
security aspects can be fully addressed and tested. Our fo-
cus is on giving concrete guidelines as to how risk based
security testing can be achieved in ordinary software engi-
neering projects. In Section 4 we describe how concrete re-
sults from security techniques applied in the requirements,
design and implementation phases can be used as a basis for
deciding what to focus on in testing activities. These risk
management activities that are tied to the specific applica-
tion developed should be used together with known risk fac-
tors such as complex components, web-facing components,
error handling etc. as suggested by others (see Section 2).
In addition it should be taken into account where we typi-
cally have failed in the past.

As described in Section 2, various testing techniques and
tools are readily available, and we therefore do not focus on
the second and third step of the testing cycle, i.e. finding

Scope / focus <

Find vulnerabilities

Fix vulnerabilities "

v

Figure 1. Software Security Testing Cycle

and fixing bugs. Instead we choose to stress that it does not
stop here! For each vulnerability that is discovered by test-
ing, special care should be taken to verify whether similar
vulnerabilities exist in other parts of the same application,
and root causes identified. The results from security test-
ing must be used to improve software development, in all
phases, to make sure the same mistakes are not repeated in
the next version or the next project. To facilitate learning
from vulnerabilities, we suggest that development organi-
sations maintain an intra-organisation vulnerability reposi-
tory, as will be further described in Section 5.

4 Risk-based Security Testing

Artefacts relevant to a risk-based testing will be pro-
duced in all phases of a software development lifecycle.
The lightweight techniques assisting the requirements and
design phases that are presented in our previous work [4-6]
are no different, and they output artefacts such as lists of
assets, security requirements and threat models.

The following sections describe how each of these help
targeting the security testing to maximise the return on the
testing effort.

4.1 Assets and Security Requirements

Assets are in many ways the very reason why we need
to consider security of applications — we need security be-
cause we have something valuable that needs protection. As
we see it, an important part of security requirements engi-
neering is to produce a prioritised list of assets [4]. The
most important assets are then given highest focus in threat
modelling activities and when specifying security require-
ments [5]. In the same way, getting access to (or otherwise
attacking) these important assets should be a main focus
in testing activities. The security requirements will mainly
give input to the functional security testing activities, which
are not the main focus of this paper, but will also point to
high risk areas that should be considered also for adversarial
security testing.

4.2 Threat Models

Threat models will provide the most important input to
the adversarial security testing. Misuse cases [24] and at-
tack trees [25] are examples of common threat modelling
techniques, and these diagrams will visualise important
parts of an application’s attack surface; thus pointing to the
areas in the code that are most exposed to attacks. Testing
must be performed on these areas to ensure that the most
likely attacks are not achievable.

4.3 Static Code Analysis Results

Secure programming with static analysis is thoroughly
described by Chess and West [10] and others [9, 11, 26].
Ideally, vulnerabilities reported by the static analysis tools
are fixed immediately. However, it is common knowledge
that these tools are not able to discover every possible vul-
nerability. Code segments where the returned number of
vulnerabilities are above average may indicate either that
the programmer has done a poor job, or that it was a partic-
ularly difficult segment to code. In both cases one should
expect more vulnerabilities to lie dormant, and thus these
parts should be thoroughly tested.

4.4 Choice of Language

Programming languages have different inherent security
properties, and thus choice of language will influence on the
testing [26]. Since e.g. C/C++ is vulnerable to buffer over-
flows, this is something you would want to test for; how-
ever, this would not be relevant if e.g. Java, Pascal or Ada
were the programming language of choice.

It is also possible to take this idea a step further and look
at which development environments that are used. Con-
tent Management Systems (CMS), for instance, are popular

tools for web application development, and several of these
have been reported to contain vulnerabilities. By searching
through vulnerability databases (see below) for your devel-
opment environment, a list of already known vulnerabilities
can be found. These vulnerabilities should be tested to de-
termine whether your application is at risk.

5 Vulnerability Repository

The vulnerability repository is our answer to the “Then
what?” question in Figure 1. All vulnerabilities found by
testing should be entered in the repository, as we will ex-
pand on below.

5.1 Existing Databases

Information about publicly known vulnerabilities are
available at several sources like the Security Focus vul-
nerability database’ and the associated mailinglist Bugtrag,
the National Vulnerability Database® hosted by NIST and
sponsored by the Department of Homeland Security/US-
CERT, and the Open Source Vulnerability Database’. Com-
mon Vulnerabilities and Exposures'? (CVE), hosted by the
MITRE Corporation, provides common identifiers for vul-
nerabilities and exposures. For a more thorough treatment
of public vulnerability repositories and mailing lists, see
Ardi et al. [27].

5.2 New Vulnerabilities

Knowledge about publicly known vulnerabilities is im-
portant and can be utilised by software development organ-
isations. Different organisations have different character-
istics, however; culture, knowledge-level or special prop-
erties of the applications being developed can be the rea-
son why some vulnerabilities are more common than others.
Knowledge of what are the most commonly introduced vul-
nerabilities can be used to focus testing, but also to improve
the software development process.

Thompson [28] has argued that “Bugs are corporate as-
sets that should be treasured and studied.” By analysing
vulnerabilities it is possible to understand what the organ-
isation is doing wrong, and compensate through the use
of secure development techniques. To better enable learn-
ing from own mistakes, we suggest organising informa-
tion about all vulnerabilities found in an intra-organisational
vulnerability repository, as illustrated in Figure 2. This

7http://www.securityfocus.com/archive/1
8http:/nvd.nist.gov/

9http://osvdb.org/

10http://cve.mitre.org/

repository should include vulnerabilities found during se-
curity testing, but also design flaws found during design re-
view, coding mistakes found by static analysis tools or code
reviews (if applied), and vulnerabilities found after deploy-
ment. It is important to learn from vulnerabilities regardless
of when they are detected.

5.3 Goals

The goals we hope to achieve by introducing the vulner-
ability repository include:

e Improve the ability to produce secure software: By
using the vulnerability repository actively to guide the
security development process in the organisation, it
should be possible to reduce the number of vulnera-
bilities in software, especially vulnerabilities that have
traditionally been common or have been given focus
because of the high risk involved.

e More cost-effective handling of vulnerabilities: Fo-
cus on common vulnerabilities should result in these
vulnerabilities being avoided alltogether or detected at
earlier stages where the cost of fixing vulnerabilities is
at a minimum [29].

e Measure progress: The vulnerability repository can
be used to measure progress, i.e. if vulnerabilities
are detected sooner in the development process, or if
the number of vulnerabilities are reduced. Such mea-
surements can be a motivation factor. Note however
that too much focus on reduced number of vulnera-
bilities can result in less effort when it comes to find-
ing vulnerabilities, and thereby reduced quality of test-
ing. Finding many vulnerabilities is a good thing and
should also be appreciated.

5.4 Using the Repository

Information from the vulnerability repository should be
utilised at all stages of the development process in order to
avoid or detect the vulnerabilities as early as possible:

¢ Requirements engineering: Vulnerabilities that are
common and potentially high risk can be used as input
to general software development policies that apply to
all applications developed by the organisation. Exam-
ple: All applications shall have proper input handling.
These general policies will then be used as a basis for
security requirements together with customer require-
ments, asset identification and threat modelling activi-
ties [5].

Requirements

T

Vulnerability
Repository
Vulnerability

& |

Where
Detection

Root cause
Risk

I

Implementation

Figure 2. Vulnerability repository

e Design: Knowledge of common vulnerabilities can

guide software designers to make more secure de-
sign choices, like choosing appropriate security design
guidelines, principles and patterns. As an example:
Statistical evidence that an organisation’s software is
susceptible to SQL injection attacks may be used as an
argument to include the Intercepting Validator security
pattern defined by Steel et al. [30]. A design review
should also profitably be based on past experiences.

Implementation: The choice of language and the use
of frameworks can influence which types of imple-
mentation vulnerabilities that are common. If large
groups of vulnerabilities can be removed by chang-
ing e.g. programming language this should be taken
into account when making such decisions. Knowledge
of common vulnerabilities can also be used to focus
code reviews, if the organisation is performing such
reviews. Finally, knowledge of common implementa-
tion errors can be used to tune the rule-sets used in the
static code analysis tools.

Testing: Information on where we typically have
failed in the past should be used as input when priori-
tising testing efforts. Concrete vulnerabilities as well
as statistics on which vulnerability categories are most
common should be utilised. This type of information is
easily obtained from the suggested vulnerability repos-
itory.

If lack of knowledge and training is identified as a cause
for important groups of vulnerabilities, this information
should be used to focus training initiatives. Concrete vul-
nerabilities should then be utilised for motivation.

5.5 What to Record

To limit the work related to registering and follow-up of
vulnerabilities, we suggest to strive towards only registering
the information we intend to use. We suggest the following
information as a minimum:

e Date — to be able to measure progress over time

e Vulnerability category — to be able to know what areas
to focus on in improvement activities

e Where — to be able to know what portions of the code
and what aspects of the application to focus on when
improving security development techniques

e In which phase and with which technique it was de-
tected — to make sure the vulnerability is tested for in
the future, and also to be able to see if the same type
of issue is detected earlier in future projects

e Root cause — to use as input to improve the security
development process

e Risk — to prioritise what to focus on, but also to see if
the risk posed by the vulnerabilities detected decreases
over time

e Countermeasure — to learn how this type of vulnerabil-
ity can be prevented or avoided, e.g. by referring to a
relevant security pattern.

In addition, it may be of interest to record who intro-
duced the vulnerability to allow each developer to learn di-
rectly from their own mistakes. However, it is important
to consider possible side effects, such as employees feeling
they are being publicly embarrassed and become uncom-
fortable with their working environment.

For the registration of vulnerabilities, we suggest to
utilise predefined categories to ease aggregation and search-
ability of information, and use free text for details. Regard-
ing vulnerability category, it is advantageous to use existing
vulnerability taxonomies like the 7+1 kingdoms defined by
Tsipenyuk et al. [31], and detail these if necessary. For de-
scribing risk it is possible to utilise the Common Vulnerabil-
ity Scoring System [32]. By representing the vulnerabilities
in a standard way it will be easier to share vulnerability in-
formation in an anonymised and generalised form, so that
they can be integrated in a public or federated repository, as
suggested by Ardi et al. [27].

6 Discussion

In this paper we have argued for the introduction of an
intra-organisational vulnerability repository, and we have
explained how this can be used to improve the security
awareness throughout all phases of a development lifecycle.
Our key motivation has been increased focus on risk-based
security testing in all software development projects, and
improvements in the way development teams learn from
their mistakes. The vulnerability repository is currently a
sketch-board idea that need to mature and be tested to have
real knowledge about its usefulness. In the following we
will however discuss possible strengths and weeknesses of
using such a reposiroty in combination with risk based test-
ing.

Large software development organisations frequently
have separate development teams and security teams be-
cause of the complexity of security work. Other organi-
sations may even hire external security experts to evaluate
their software and do the security testing. [15] In such situ-
ations, the importance of a vulnerability repository is high-
lighted: If knowledge about vulnerabilities discovered by
the security testers is not passed on to the actual developers
who introduced the vulnerabilities, they will keep making
the same mistakes over and over again.

Establishing databases with information on reported se-
curity vulnerabilities is nothing new, e.g. Howard and Lip-
ner [33] describes bug tracking databases as important as-
sets in the Secure Development Lifecycle (SDL) process.
However, their main use of such databases is to keep lists
of errors to fix before a software release, or lists of vulnera-
bilities reported by the public (for which security patches
should be produced). Our approach has a wider scope,
where the focus is to produce more secure software - also in
later projects.

One drawback of our approach may be that it in many
ways is (too) closely tied to traditional development meth-
ods, and consequently would be less suited to an agile de-
velopment context. Most of the artefacts we recommend
as input to the risk-based testing activity are never created
in agile methods such as eXtreme Programming (XP). On
the other hand, the XP tenet of “write the test first” could
have interesting implications if re-written “write the secu-
rity test first.” Whether this is in fact possible, remains an
open question.

As computer security professionals, the importance of
increased software security is abundantly clear to us. How-
ever, we also realise that the average developer might be
less than thrilled when presented with yet another reporting
scheme that requires constant monitoring and maintenance;
this can easily be perceived as an extra burden that does not
contribute appreciably to the implicit goal of producing the
most functionality in the least possible time.

Thus, for a software security testing scheme to be suc-
cessful in the average software development project, it has
to be easy to use and require an acceptable amount of re-
sources. Still, it must be able to detect the most severe vul-
nerabilities. More practical experience is needed in order
to confirm whether this is achieved with our suggested ap-
proach, though we believe the practical recommendations
will improve security testing in most projects and enable
teams and organisations as a whole to learn from past mis-
takes. To be able to utilise the full potential of the vulnera-
bility repository it is however necessary to integrate the use
of the repository into working routines, and even better, to
integrate the repository with development tools so that rele-
vant information is available when needed [27].

Our work is mainly targeted towards developers and
testers who are not security experts. By following our light-
weight approach they will be provided with sufficient basis
to organise and prioritise security testing. We do not claim
that we have presented the perfect solution, however, we do
argue that a little security focus goes a long way. We pro-
pose to base the risk-based testing scheme on artefacts that
(in our opinion) need to be developed anyway, thus min-
imising the extra effort required to identify test targets.

7 Conclusion and further work

We have presented a lightweight software security test-
ing scheme where the focus is on utilising the limited re-
sources available in the best possible way. Concrete guide-
lines are offered on how to take a risk based view on testing,
assuring that the testing efforts are focused on the most crit-
ical parts of applications. An intra-organisational vulner-
ability repository is suggested in order to enable learning
from vulnerabilities at all stages of software development.
In this way, organisations do not have to use resources on
fixing the same problems over and over again in different
software versions and projects.

More work is needed on integrating the vulnerability
repository into the overall software development process,
and especially on tool support. This includes utilising in-
formation from the repository together with the other risk-
based techniques to generate concrete recommendations on
what to focus on in security testing. An important steps
towards achieving this is to determine how to categorise
or otherwise represent vulnerabiities. More work is also
needed on how to weigh different factors, like failures from
past project vs. important assets, to be able to provide
more concrete recommendations. The possible advantages
of connecting intra-organisational vulnerability repositories
with external repositories should also be more thoroughly
addressed, since this is likely to influence what vulnerability
information to register, and may increase the advantages of
integrating the repository with common development tools.

However, such integration may also pose new challenges
with respect to generalisation and anonymisation, since un-
anonymised vulnerability information may be considered
highly confidential.

Acknowledgments

The authors wish to thank Per Hakon Meland for inspir-
ing us to write this paper, and for providing useful com-
ments. We also wish to thank the anonymous reviewers.

References

[1] P. Coffee. (2006) Security Onus Is on Developers.
eWeek. [Online]. Available: http://www.eweek.com/
article2/0,1895,1972593,00.asp

[2] H. Mouratidis, P. Giorgini, and G. Manson, “When
security meets software engineering: a case of mod-
elling secure information systems,” Information Sys-
tems, vol. 30, no. 8, pp. 609629, 2005.

[3] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole,
“Buffer overflows: Attacks and defenses for the vul-
nerability of the decade,” in Proceedings of DARPA
Information Survivability Conference and Expo (DIS-
CEX), Hilton Head Island SC, January 2000.

[4] M. G. Jaatun and I. A. Tgndel, “Covering your assets
in software engineering,” in The Third International
Conference on Availability, Reliability and Security
(ARES 2008), Barcelona, Spain, 2008, pp. 1172-1179.

[5] I. A. Tendel, M. G. Jaatun, and P. H. Meland, “Secu-
rity Requirements for the Rest of Us: A Survey,” IEEE
Software, vol. 25, no. 1, 2008.

[6] P. H. Meland and J. Jensen, “Secure software design
in practice,” in The Third International Conference
on Availability, Reliability and Security (ARES 2008),
Barcelona, Spain, 2008, pp. 1164-1171.

[7]1 (2007) SODA — a Security-Oriented Software Devel-
opment Framework. SINTEF ICT. [Online]. Avail-
able: http://www.sintef.no/soda

[8] C. Wysopal, L. Nelson, D. D. Zovi, and E. Dustin, The
Art of Software Security Testing: Identifying Software
Security Flaws. Symantec Press, 2006.

[9] M. Dowd, J. McDonald, and J. Schuh, The Art of Soft-
ware Security Assessment. Addison-Wesley, 2007.

[10] B. Chess and J. West, Secure Programming with Static
Analysis. Addison-Wesley, 2007.

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

G. McGraw, Software Security - Building Security In.
Addison-Wesley, 2006.

J. A. Whittaker and H. H. Thompson, How to Break
Software Security. Addison-Wesley, 2003.

M. Andrews and J. A. Whittaker, How to Break Web
Software. Addison-Wesley, 2006.

G. Hoglund and G. McGraw, Exploiting Software:
How to break code. Addison-Wesley, 2004.

T. Gallagher, L. Landauer, and B. Jeffries, Hunting Se-
curity Bugs. Microsoft Press, 2006.

H. Thompson, “Why security testing is hard,” Security
& Privacy Magazine, IEEE, vol. 1, no. 4, pp. 83-86,
July-Aug. 2003.

B. Potter and G. McGraw, “Software security testing,”
Security & Privacy Magazine, IEEE, vol. 2, no. 5, pp.
81-85, Sept.-Oct. 2004.

B. Arkin, S. Stender, and G. McGraw, “Software pen-
etration testing,” Security & Privacy Magazine, IEEE,
vol. 3, no. 1, pp. 84-87, Jan.-Feb. 2005.

K. Jiwnani and M. Zelkowitz, “Maintaining software
with a security perspective,” in Proceedings of the
International Conference on Software Maintenance
(ICSM’02), Montréal, Canada, 2002.

S. Amland, “Risk based testing: Risk analysis funda-
mentals and metrics for software testing including a
financial application case study,” The Journal of Sys-
tems and Software, vol. 53, pp. 287-295, 2000.

D. Geer. (2007) MetriCon 2.0 Digest. [Online]. Avail-
able: http://www.securitymetrics.org/content/attach/
Metricon2.0/metricon2.digest. PDF

A. Jaquith, Security Metrics: Replacing Fear, Uncer-
tainty, and Doubt. Addison-Wesley, 2007.

H. H. Thompson, J. A. Whittaker, and F. E. Mottay,
“Software security vulnerability testing in hostile en-
vironments,” in SAC ’02: Proceedings of the 2002
ACM symposium on Applied computing. ~ Madrid,
Spain: ACM, 2002, pp. 260-264.

G. Sindre and A. L. Opdahl, “Eliciting security re-
quirements with misuse cases,” Requirements Engi-
neering, vol. 10, no. 1, pp. 34-44, 2005.

B. Schneier, “Attack Trees - Modeling security
threats,” Dr. Dobb’s Journal, July 2001. [Online].
Available: http://www.ddj.com/184411129

[26]

K. M. Goertzel, T. Winograd, H. L. McKinley, L. Oh,
M. Colon, T. McGibbon, E. Fedchak, and R. Vi-
enneau, “Software Security Assurance,” Information
Assurance Technology Analysis Center and Data
(IATAC) and Analysis Center for Software (DACS),
Tech. Rep., 2007.

S. Ardi, D. Byers, P. H. Meland, 1. A. Tgndel, and
N. Shahmehri, “How can the developer benefit from
security modeling?” in The Second International Con-
ference on Availability, Reliability and Security (ARES
2008), Vienna, Austria, 2007.

H. Thompson, “Application penetration testing,” Se-
curity & Privacy Magazine, IEEE, vol. 3, no. 1, pp.
66—69, Jan.-Feb. 2005.

K. Hoo, A. Saudbury, and A. Jaquith, “Tangible ROI
through Secure Software Engineering,” Secure Busi-
ness Quarterly, vol. 1, pp. 1-3, 2001.

C. Steel, R. Nagappan, and R. Lai, Core Security Pat-
terns: Best Practices and Strategies for J2EE(TM),
Web Services, and Identity Management. Prentice
Hall, 2005.

K. Tsipenyuk, B. Chess, and G. McGraw, “Seven per-
nicious kingdoms: a taxonomy of software security
errors,” Security & Privacy Magazine, IEEE, vol. 3,
no. 6, pp. 81-84, Nov.-Dec. 2005.

P. Mell, K. Scarfone, and S. Romanosky, “Com-
mon vulnerability scoring system,” Security & Pri-
vacy Magazine, IEEE, vol. 4, no. 6, pp. 85-89, Nov.-
Dec. 2006.

M. Howard and S. Lipner, The Security Development
Lifecycle. Microsoft Press, 2006.

