
Covering Your Assets in Software Engineering

Martin Gilje Jaatun and Inger Anne Tøndel
SINTEF Information and Communication Technology

Department of Software Engineering, Safety and Security
{martin.g.jaatun, inger.a.tondel}@sintef.no

Abstract

Many security requirements elicitation techniques im-
plicitly assume that assets are identified on beforehand, but
few actually describe how this should be done. In this paper
we suggest one specific method that can be used to identify
and prioritize assets in any software engineering project.

1 Introduction

The concept of “assets” is central to the very idea of com-
puter security – we need security because we have some-
thing that needs protection. This “something” is what we
collectively refer to as our assets. Thus, asset identification
is a crucial component of the requirements phase – specif-
ically, security requirements are primarily needed in order
to protect our assets, and this will obviously be impossible
to do properly unless we know what these assets are.

We have previously [1] argued the need for secure soft-
ware engineering methods that are suitable for the “aver-
age” developer. This remains our focus also in this paper,
and our proposed method for asset identification is intended
for “normal” software engineering projects, not projects
that are particularly security critical. This implies that the
method must be easy and inexpensive to use, also for devel-
opers who are not security experts. The goal of the method
is to discover all the assets that are relevant1 for the system
being developed, and facilitate a prioritization process in or-
der to identify which assets have a higher (or lower) priority
with respect to information security.

Before asset identification takes place, the main secu-
rity objectives of the software to be developed should be
identified. By security objectives we mean high level se-
curity requirements or goals identified by customers, and
any security requirements coming from standards, policies
or legislation. The results of asset identification should be

1Strictly speaking, our primary concern is to identify the assets that are
most important with respect to information security – if we overlook assets
that don’t need protection, we can still sleep at night.

used as a basis for identifying threats, where attack trees [2]
or similar are created based on the most important assets
identified. Security requirements are then elicited based on
threat analysis.

2 Related work

We have in our previous survey [1] shown that asset iden-
tification is considered important in several major security
requirements engineering initiatives [3–6]. Details on how
to perform asset identification in the context of software
engineering are however rare. CLASP [3] states that it is
important to take a resource-centric approach: “Functional
security requirements should show how the basic security
services are addressed for each resource in the system, and
preferably on each capability on each resource.” Exactly
how one should go about identifying a system’s resources is
not explained beyond providing a list of sample resources.
Haley et al. [5] place a lot of focus on the importance of
identifying assets; but advice on how to do this is limited
to showing in a figure that assets are elicited from appli-
cation business goals, in addition to a description of what
assets are: “In general assets consist of all the information
resources stored in or accessed by the system-to-be and tan-
gible resources such as the computers themselves. Assets
can be composed of other assets; backup tapes would be
a good example.” Boström et al. [6], who focus on secu-
rity requirements engineering in development projects using
eXtreme Programming (XP), suggest “Identification of crit-
ical assets” as an important step, but actual advice is limited
to a definition of assets, one example (“Confidential nego-
tiation proposals”) and the following description: “The XP
team, led by its security engineer, collaborates with the cus-
tomer to identify relevant assets and their value.”

Of the above mentioned initiatives, the most detailed
suggestions on how to perform asset identification come
from Microsoft. Lipner and Howard [4] describe asset
identification as part of threat modeling: “Using a struc-
tured methodology, the component team identifies the assets
that the software must manage and the interfaces by which

1

mgj
Text Box
Presented at the Second International Workshop on Secure Software Engineering, in conjunction with ARES 2008, Barcelona, Spain, March 2008



those assets can be accessed.” More details are not given
as to how this structured methodology works. The threat
modeling methodology of Microsoft is further described by
Swidersky and Snyder [7]. Here “Determining which as-
sets are of interest” is one of the steps suggested. Most of
the section related to assets focuses on describing differ-
ent types of assets, but some tips are also given on how to
identify assets: “Many assets are identified when discussing
system functionality, use scenarios, and other background
information. Questions to ask include: Does the system
have access to any resources that an external entity could
not normally access? Which aspects of the system are crit-
ical to proper functionality? What is the purpose of this
system?” Which information to collect on each asset is de-
tailed, including numerical ID, name, description2 and trust
levels3.

An additional initiative not mentioned in Tøndel et al. [1]
is the AEGIS (Appropriate and Effective Guidance for In-
formation Security) process for building secure and usable
software [8]. Assets are a main focus of AEGIS, and the fol-
lowing categories of assets are considered: Operatives (e.g.
users, administrators, developers), hardware (e.g. network
link, computer) and data (e.g. application, information). In
addition, security measures are introduced as an asset cate-
gory that can consist of any of the other asset types. Sev-
eral different types of system stakeholders are involved in
the AEGIS process, including decision makers, developers,
users and facilitators. There is little detail on how assets
are identified, but an UML asset model is provided, and a
case study with students explains that assets were identi-
fied by “one student drawing the asset model onto a white-
board while the group of students as a whole asked detailed
questions about the architecture that would inform the dia-
gram.” Participants then further judge the identified assets
importance when it comes to confidentiality, integrity and
availability in a qualitative way based on natural language.
Scenarios, for instance in the form of abuse cases, is also
suggested to improve the understanding of what the secu-
rity properties means for an asset. AEGIS then continues
with risk analysis followed by design activities.

Asset identification is also a common activity in risk
analysis. An important example of an asset driven risk
evaluation approach is OCTAVE4 (Operationally Critical
Threat, Asset, and Vulnerability Evaluation5). OCTAVE
is targeted at organizational risk and comes in three main
versions: the OCTAVE method that is centered towards

2Including why the asset needs protection.
3Trust levels are explained as access categories. Should state which

trust levels are normally allowed to access or interact with the asset.
4http://www.cert.org/octave/methods.html. OCTAVE R© is registered in

the United States Patent and Trademark Office by Carnegie Mellon Uni-
versity

5Operationally Critical Threat, Asset and Vulnerability Evaluation is a
service mark of Carnegie Mellon University

large organizations with 300 or more employees; OCTAVE-
S which is centered towards organizations of about 100 peo-
ple or less; and finally OCTAVE Allegro that focuses pri-
marily on information assets, how they are used, and threats
towards these assets. OCTAVE Allegro [9] is the most rele-
vant OCTAVE version for our setting. In OCTAVE Allegro
it is suggested that assets are identified by brainstorming
activities, and experience shows that users of the methodol-
ogy have experienced little difficulty in identifying assets.
More focus is therefore placed on how to identify the most
important assets, and the use of critical success factor anal-
ysis [10] is suggested as a way to improve this. For each
selected asset it is then registered why it was selected, who
is the owner of the asset, and what its main security require-
ments are. Further activities include identifying and inves-
tigating areas of concern for each asset.

3 Asset identification

Our asset identification method helps to establish an
overview of the assets of a system and their different re-
quirements for protection. This information makes it easer
to prioritize security requirements later on. We suggest to
look at the value of the assets both from the customer’s and
the system owner’s point of view, but also from the view
of an attacker. To identify assets one can use functional re-
quirements of the system in combination with brainstorm-
ing techniques. For each asset one should then make a
judgment regarding the different stakeholders’ priority of
the confidentiality, integrity and availability of this asset.
When assigning priorities one should use predefined cate-
gories, for instance high, medium and low.

When an asset identification has been performed one has
a view of which properties of what assets are most important
to protect. This information should be used to prioritize
requirements, and also to identify where to focus the effort
when it comes to identifying more detailed requirements.

3.1 Key contributors

The asset identification process should be performed by
a group composed of:

• Requirements team

• Other developers

• Security experts (if available)6

• Customers and/or end-users (if applicable)

6Security expertise will be a bonus in this process, but our method is
designed to also work without it.



Generally, anyone that could contribute with ideas on as-
sets may contribute, but the total group should not exceed 8
persons (plus facilitator).

This method can be used in any project. For large
projects one may however need to use more coarse assets
than in smaller projects, or execute the method several times
on a subset of the application domain.

3.2 Step 1: Brainstorming

We suggest to use the brainstorming techniques de-
scribed by Dybå et al. [11]. Note that this may be con-
sidered an amalgamation of traditional brainstorming and
“brainwriting” [12] [13]. The purpose of brainstorming is
generally to generate ideas on a given topic; in our case the
topic is restricted to answering the question “what are our
assets”. By using this technique one is able to involve dif-
ferent types of persons in a creative idea-generating process,
without putting too many restrictions on the end result.

As preparation for the brainstorming session, one must
make available Post-it Notes7 and pens for all participants,
and somewhere to put the Post-it Notes during brainstorm-
ing (e.g. a large sheet of paper to put on the wall).

1. Present the process and the rules to follow while brain-
storming.

• Everybody shall participate

• No discussion/criticism during the brainstorming

• One should build on ideas presented by others

2. Give out Post-it Notes and pens to all participants

3. Decide on a time limit for individual brainstorming,
e.g. 5 minutes.

4. Formulate a question on which to brainstorm (e.g.,
“What are our assets?”), write it down and place it
somewhere visible to everybody in the group.

5. All participants write down their ideas – one idea per
post-it note.

6. When time is up, everybody presents their ideas to the
group by placing their post-it notes on for instance a
piece of paper on the wall. Often it is advantageous
to do this in a structured way: Everybody takes turns
presenting their ideas. One is only allowed to present a
limited number of ideas at the time, and the remaining
ideas must wait until the next round.

7. Group the ideas and eliminate duplicates. Everybody
should participate in this step.

7Post-it Notes R© is a registered trademark of 3M (http://www.3m.com).
We have found that generic-brand sticky notes also work.

8. Document the result, e.g. with a camera.

Note that although Wilson [13] warns that a trained fa-
cilitator is necessary to ensure success of a brainstorming
session, we have found that even with just “normal” par-
ticipants (and appointing one facilitator), there is tangible
value to be had from brainstorming. Furthermore, this is
also to a great extent learning by doing – if a development
organization frequently employs brainstorming in relevant
situations, the individual participants will in time become
reasonably confident (if not to say skilled) as facilitators.

In a small group where the participants know each other
well, it may be more cost-effective with respect to time to
let each participant express their ideas orally (one at a time),
and assign one participant (or facilitator) to write the ideas
on a whiteboard as they are presented. In this case, dupli-
cates are avoided, and it may be easier (quicker) to get new
ideas regarding assets based on the assets that are being pre-
sented.

3.3 Step 2: Assets from existing docu-
mentation

Once the brainstorming session is finished, it is a good
idea to examine any available functional requirements or
functional descriptions of the system to determine if any
important assets have been overlooked. In some cases, this
may inspire a second round of brainstorming.

3.4 Step 3: Categorization and prioritiza-
tion

Once a list of assets is available, the assets must be cate-
gorized and prioritized with respect to security. This should
be performed by the same group that participated in the as-
set identification, possibly augmented by management par-
ticipation8.

We recommend assigning priorities from three stake-
holders’ perspectives:

• The Customer/system user

• The System developer/owner

• The Attacker

As can be seen from Table 1, the different stakeholders’
priority of the assets is described with three letters:

C: Confidentiality

I: Integrity

8Management should possibly not be invited to the brainstorming ses-
sion itself, since one of the pitfalls identified by Wilson [13] is inviting
“anyone [...] who is feared by the other members”.



ASSETS STAKEHOLDERS’ PRIORITY
Focus: protection.
What is most important to protect from stakehold-
ers’ point of view?

Focus: attacks.
What is most interesting/valuable
for an attacker?

Description Customer/ system user System developer/ owner Attacker
<asset 1> <C-? I-? A-?> <C-? I-? A-?> <C-? I-? A-?>
<asset 2> <C-? I-? A-?> <C-? I-? A-?> <C-? I-? A-?>
... ... ... ...

Table 1. Asset Prioritization Table

A: Availability

These letters can then get assigned a number indicating
the importance of confidentiality, integrity or availability for
this asset9.

1. Decide which categories to use to represent priorities.
In most cases it will be adequate with three (qualita-
tive) levels:

1: High

2: Medium

3: Low

2. For each asset, make a judgment regarding the dif-
ferent stakeholders’ priority of the confidentiality, in-
tegrity and availability of this asset. If e.g. confiden-
tiality is not an issue for an asset, it is not necessary to
include this property and assign a level to it (the same
goes for integrity and availability).

3. If many assets have been identified, consider pruning
the assets with low priorities.

If management has not been involved up to this point,
they should be given the opportunity to comment on the
asset tables. For small systems where a limited number
of assets are identified, the final prioritization may be per-
formed manually. With a large number of assets, we suggest
adding together all priorities for each asset (a missing pri-
ority counts as a “4”), and ranking the asset with the lowest
sum as the highest overall priority. This implicitly gives
more weight to customers’ and owners’ priorities over at-
tackers’, but this seems reasonable since the latter are the
most imprecise.

9We maintain that the traditional CIA triad is enough for this purpose -
additional properties like non-repudiation will represent special cases that
should be treated separately.

4 Experiences

In the spirit of how compilers traditionally were de-
veloped [14]10, we have employed our asset identification
method within the project where we defined it; the SODA
web application SODAweb [15]. The SODA project de-
fined two versions of a web application (the two versions
where defined one year apart), where different developers
where involved. In the following we describe our experi-
ences identifying assets in the two different versions of the
application.

4.1 First version

The idea behind SODAweb is to provide a tool for sys-
tem developers that will help improve the information secu-
rity properties of everyday programs. It is basically a pub-
licly accessible web resource with open content, but where
users can log on to receive more personalized service. SO-
DAweb shall assist the users in selecting techniques by of-
fering a set of questions about the user’s preferences and
create a profile based on the answers.

SODAweb shall be an independent and self-contained
application – meaning that it does not depend on any other
systems to be useful to its users. However, SODAweb may
contain recommendations of other products that are useful
for applying the individual techniques.

Security is a major concern for SODAweb. As the prod-
uct is to supposed to promote secure software development,
it is important that the product is secure, i.e. that it is resis-
tant to malicious attacks.

4.1.1 User interfaces

SODAweb has two main user interfaces: one for adminis-
trative use (content and user administration) and one main
interface for using and interacting with the system for regu-
lar users. Both these user interfaces shall be web-browser-

10Where C-compilers were written in C, and subsequently compiled
with themselves.



ASSETS STAKEHOLDERS’ PRIORITY
Focus: protection.
What is most important to protect from stakehold-
ers’ point of view?

Focus: attacks.
What is most interesting/valuable
for an attacker?

Description Customer/ system user System developer/ owner Attacker
Username I-1 A-3 I-1 A-2 I-2 A-2
Password C-1 I-2 A-3 C-1 I-2 A-2 C-1 I-2 A-2
Technique descriptions I-1 A-1 I-1 A-1 I-1 A-1
Personal profile C-2 I-1 A-3 C-2 I-1 A-2 C-3 I-2 A-2
Personal notes C-1 I-1 A-3 C-2 I-1 A-2 C-2 I-3 A-3
Content structure I-1 A-1 I-1 A-1 I-1 A-1
Questions (for profile) I-1 A-3 I-1 A-2 I-1 A-3
Authorization data C-2 I-1 A-3 C-2 I-1 A-2 C-1 I-1 A-3

Table 2. Asset prioritization table for first application version

Figure 1. Result of the brainstorming session

based. The regular user interface shall map closely to the
phases defined in the SODA lifecycle model [15].

4.1.2 Assets identified

We performed a brainstorming session as described in sec-
tion 3.2, producing the assets depicted in Figure 1. We then
proceeded immediately to classification and prioritization.

Table 2 shows the main assets and to what extent they
need protection. As can be seen, in this application avail-
ability of the personalized service is not considered of high
importance, since the open content (technique descriptions)
will still be available. Confidentiality is also not considered
relevant for the open content and for the usernames.

4.2 Second version

The second version of the SODAweb application that
was specified was significantly less ambitious than the first.
This time, the goal was simply to define a mostly read-only
web application (little more than a static web page hierar-
chy). In this case, we also specifically stated that the appli-
cation would be running on a publicly accessible server in
SINTEF’s domain (http://www.sintef.no). The only inter-
active component was decided to be a feedback mechanism
where users can report experiences with the application etc.

The security objectives that provided the context for the
asset identification were:

• Integrity of the application

• SINTEF’s IT regulative and security policy

The identified assets and the results of the prioritization
process are shown in Table 3. Reputation was also identified
as an asset, but it proved difficult to fit this into the mold,
and it was therefore left out of the table. However, it was
agreed that damage to the integrity of the application would
also damage our reputation (as system owner).

In contrast with the first version, we did not leave out cri-
teria considered less important, but instead assigned a value
of 3 to these. This does not conform to our method as de-
scribed in section 3, and in hindsight we realize that not
excluding (e.g.) confidentiality when it is considered unim-
portant effectively compresses the scale from four to three
levels. This is unfortunate, and we thus recommend that the
original method is adhered to.

4.3 Process evaluation

The brainstorming technique was productive in identi-
fying assets for both versions of the application. Though



ASSETS STAKEHOLDERS’ PRIORITY
Focus: protection.
What is most important to protect from stakehold-
ers’ point of view?

Focus: attacks.
What is most interesting/valuable
for an attacker?

Description Customer/ system user System developer/ owner Attacker
Information C-3 I-1 A-2 C-3 I-1 A-2 C-3 I-2 A-2
Web server C-3 I-2 A-2 C-2 I-1 A-2 C-3 I-1 A-2
Database C-3 I-1 A-2 C-2 I-1 A-2 C-3 I-1 A-2
Our internal network C-3 I-3 A-3 C-1 I-1 A-1 C-3 I-2 A-3
Administrator account C-3 I-3 A-3 C-1 I-1 A-2 C-2 I-1 A-3
Feedback information C-3 I-1 A-3 C-2 I-2 A-3 C-3 I-2 A-3

Table 3. Asset prioritization table for second application version

the composition of the teams for the different versions var-
ied slightly, both authors were present in each process. In
each case, the same persons who were defining functional
requirements were also part of the asset identification, and
they thus knew each other on beforehand.

The asset identification process was fairly efficient in
both cases, taking approximately an hour11. The result pro-
vided a useful overview and a starting point for prioritizing
which assets to focus on in the ensuing requirements elici-
tation process (misuse cases, attack trees, etc.). It is impor-
tant to take the time to actually perform the prioritization;
our stated goal is to identify the most important assets. The
extent and coverage will always depend on how important
security is considered in any given project.

As in any collaborative process, there may be consider-
able discussion and disagreement with respect to what value
or prioritization to put on any given asset. The actual argu-
ments and rationale used for categorizing a given asset is not
documented in our method – this may lead to difficulties in
comparing asset identification sessions, even if the reason-
ing is reasonably consistent within a given session. On the
whole, however, we feel that we have struck the right bal-
ance between documentation rigor and ease-of-use.

Our two examples were small enough for the final rank-
ing of assets to be done manually. For illustrative purposes,
we have nonetheless calculated the “priority sum” and the
resulting ranking for the second example in table 4.

At first glance, the two asset tables seem quite different,
but this is mainly due to different granularity with respect to
different aspects of the two cases. E.g., “Technique descrip-
tions”, “Personal profile” and “Content structure” in the first
version approximately map to “Information” in the second
version, “Personal notes” maps to “Feedback information”,
and “Authorization data” maps roughly to “Administrator
account”. The assets “Web server”, “Database” and “Our
internal network” were not identified in the first version pri-

11although we did not actually time the process.

marily since we then pictured a “stand-alone” server outside
our own network. The absence of “Username”, “Password”,
etc., in the second version is of course due to changing re-
quirements as described in section 4.2.

5 Discussion

In the introduction we stated that we need a method for
asset identification that is easy and inexpensive to use, also
for developers who are not security experts. At the same
time we need to be able to discover relevant assets and prior-
itize them. Our experiences in using the method suggested
in this paper show that this method has potential when it
comes to reaching this goal. It is easy to use, and the time
needed should be affordable to most development projects.
The time needed will also be reduced with training, and it
should be possible to reuse part of the result in similar de-
velopment projects later on. The method does not require
specific security expertise, though it will undoubtedly ben-
efit from participants that are able to think of the system
from the viewpoint of an attacker. The method is able to
discover important assets and prioritize these, though it is
too early to say whether all relevant assets are discovered.

The method can be said to meet our main requirements,
but still has some limitations. The success of the method
is very much dependent on the individuals participating in
asset identification, as the types of assets identified will de-
pend on their competence and main focus. This can be
shown by the differences in the types of assets that were
identified in the two sessions described in this paper. Only
one session identified assets like web server and database.
One likely reason for this is that the method is based on
brainstorming, which is not a structured method. To im-
prove this it is possible to utilize checklists or predefined
questions in the brainstorming activity, e.g. the questions
suggested for asset identification by Swidersky and Sny-
der [7]. In spite of the limitations, brainstorming and other
unstructured methods for identifying assets are also recom-



mended in established methods such as OCTAVE Allegro
and in research initiatives like AEGIS, and we still believe
this is a fruitful method for asset identification.

Using functional requirements as a starting point comes
with the risk of not covering assets such as reputation. As
pointed out by Swidersky and Snyder [7] assets can be ab-
stract, like the safety of employees, the company’s repu-
tation and availability and connectivity of resources. We
however believe that for this lightweight approach, most of
the assets of this type can be indirectly covered by looking
at the different actors’ value of the assets. When stating the
value of an asset from the owner’s point of view, reputation
should be part of the evaluation.

In our approach, information on an asset is limited to
values representing the importance of the confidentiality, in-
tegrity and availability of this asset. This is done to keep the
method lightweight, and it is what is needed for prioritiza-
tion. The reasons behind these values and the criteria used
are however lost. This may reduce the possibility to reuse
the results later, and makes it harder to compare results of
different sessions since the criteria may be different.

One of the main innovations in our approach compared
to similar initiatives is the inclusion of the attacker’s per-
spective. By only focusing on assets important for users or
system owners, system developers may fail to cover assets
that are attractive to attackers, since different actors’ view
of an asset are not directly related [5]. One may argue that
attackers are a diverse group and that it is hard to know to
what extent they have interest in specific assets. We still
feel that it is useful to put oneself in the attackers place
and think about who has interest in this asset, something
which will influence the likelihood of attack. The attacker’s
perspective is then further elaborated in the threat analysis
following asset identification.

Another advantage of including the attacker’s perspec-
tive is that this indirectly covers some assets that are other-
wise easily overlooked (or difficult to relate to). A specific
example of this is the “Reputation” asset: In the past, it may

ASSETS Ranking sum
Database 17
Web server 18
Information 19
Administrator account 19
Our internal network 20
Feedback information 22

Table 4. Calculated asset ranking for second
application version

not have mattered12 to a company if someone uses their file
servers without permission for storing data, as long as they
behave themselves and do not create problems for legiti-
mate users. However, this changes dramatically if the com-
pany risks being exposed in the tabloids as a haven for file-
sharers and other deviants – suddenly protecting the “File
Server” asset becomes much more important, implicitly be-
cause of the “Reputation” asset.

As pointed out in section 2, details on how to identify
assets in a software development context are rare. One of
the most concrete recommendations we are aware of are
those described by Swidersky and Snyder [7] as part of
threat modeling. Their recommendation of using discus-
sions based on background information, e.g. system func-
tionality, can be said to be concretized in our method, and
the questions they suggest can be utilized in the brainstorm-
ing process. The information they recommend to register
for each asset is however different from what is registered
in our method. We have suggested to look at the value of
the assets from the customer’s, the system owner’s, and the
attacker’s point of view. These three views are not taken
by Swidersky and Snyder. On the other hand, they focus
on information like descriptions and trust levels, something
that if included in our approach can reduce one of the limi-
tations of our method, namely that the criteria used and the
reasons behind the judgment are lost. Including more in-
formation will however increase the time needed for asset
identification.

Our approach is also in many ways similar to the AEGIS
approach in the use of informal group discussions and as-
sessment of the importance of confidentiality, integrity and
availability for each asset. OCTAVE Allegro, although fo-
cusing on organizational risk, also utilizes brainstorming,
and considers confidentiality, integrity and availability re-
quirements for each asset. Compared to AEGIS our ap-
proach however lacks a view of dependencies between as-
sets. Our experience shows that at least for smaller appli-
cations such dependencies may reveal themselves as part of
creating attack trees for the major assets. It should however
be considered to what extent dependencies can be identified
as part of our method without making the method unneces-
sarily complex.

It may be argued that our ranking sum is an overly
simplistic approach; more experience with applying our
method to projects with a larger number of assets is required
to determine the usefulness of this heuristic. Other possibil-
ities include calculating separate sums for C, I and A for
each asset, but this again comes at a cost of increased com-
plexity.

12The example is somewhat construed, since I cannot imagine a sys-
tem administrator ever “not caring” about illegitimate users on her system;
however, this effectively would have been the reaction of the local police
force should the incident have been reported: “Sooo. . . nothing was actu-
ally stolen . . . ?”



6 Conclusion and further work

We have presented a step-by-step method for asset iden-
tification and classification that is suitable for most software
engineering projects.

We have applied this method in the requirements phase
of the SODA research project [15], but we intend to perform
further testing in national and European projects in order
to validate and subsequently improve the method we have
described in this paper.

Acknowledgments

The authors wish to thank Lillian Røstad of SINTEF
ICT, who led our first brainstorming session for asset iden-
tification. We would also like to thank the other participants
in the SODA project, Per Håkon Meland, Jostein Jensen and
Maria B. Line for fruitful collaboration. We are further-
more grateful for the influence from the Software Process
Improvement group at our department, represented by Tore
Dybå, Torgeir Dingsøyr and Nils Brede Moe.

Thanks also to the anonymous reviewers who provided
many useful comments for the improvement of our paper.

The title of this paper is inspired by a footnote in Marcus
Ranum’s article “Thinking About Firewalls” [16].

References

[1] I. A. Tøndel, M. G. Jaatun, and P. H. Meland, “Secu-
rity requirements for the rest of us: A survey,” IEEE
Software, vol. 25, no. 1, 2008.

[2] B. Schneier, “Attack Trees - Modeling security
threats,” Dr. Dobb’s Journal, July 2001. [Online].
Available: http://www.ddj.com/184411129

[3] Secure Software Inc. (2005) The CLASP Application
Security Process. Secure Software Inc. [Online].
Available: http://www.securesoftware.com/solutions/
clasp.html

[4] S. Lipner and M. Howard. (2005) The Trust-
worthy Computing Security Development Life-
cycle. Microsoft. [Online]. Available: http:
//msdn2.microsoft.com/en-us/library/ms995349.aspx

[5] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh,
“Security requirements engineering: A framework for
representation and analysis,” IEEE Transactions on
Software Engineering, vol. (to appear), 2007.

[6] G. Boström, J. Wäyrynen, M. Bodén, K. Beznosov,
and P. Kruchten, “Extending XP practices to support

security requirements engineering,” in SESS ’06: Pro-
ceedings of the 2006 international workshop on Soft-
ware engineering for secure systems. New York, NY,
USA: ACM Press, 2006, pp. 11–18.

[7] F. Swidersky and W. Snyder, Threat Modeling. Mi-
crosoft Professional, 2004.

[8] I. Flechais, C. Mascolo, and M. A. Sasse, “Integrating
security and usability into the requirements and
design process,” International Journal of Electronic
Security and Digital Forensics, vol. 1, no. 1, pp.
12–26, 2007. [Online]. Available: http://inderscience.
metapress.com/link.asp?id=j32v167864556552

[9] R. A. Caralli, J. F. Stevens, L. R. Young, and W. R.
Wilson, “Introducing OCTAVE Allegro: Improving
the Information Security Risk Assessment Process,”
CMU/SEI, Tech. Rep. CMU/SEI-2007-TR-012, 2007.
[Online]. Available: http://www.cert.org/archive/pdf/
07tr012.pdf

[10] R. A. Caralli, “The Critical Success Factor
Method: Establishing a Foundation for Enter-
prise Security Management,” CMU/SEI, Tech.
Rep. CMU/SEI-2004-TR-010, 2004. [Online].
Available: http://www.sei.cmu.edu/publications/
documents/04.reports/04tr010.html

[11] T. Dybå, T. Dingsøyr, and N. B. Moe, Praktisk pros-
essforbedring - En håndbok for IT-bedrifter. Fagbok-
forlaget, 2002.

[12] M. Aiken, M. Vanjani, and J. Paolillo, “A comparison
of two electronic idea generation techniques,”
Information & Management, vol. 30, no. 2, pp. 91–99,
1996. [Online]. Available: http://www.sciencedirect.
com/science/article/B6VD0-3VVVRD2-5/2/
e3a232f84f07347c8c8bd7ae65314dcf

[13] C. E. Wilson, “Brainstorming pitfalls and best prac-
tices,” interactions, vol. 13, no. 5, pp. 50–63, 2006.

[14] D. M. Richie, “The Development of the C Language,”
in Second ACM History of Programming Languages
Conference, April 1993.

[15] (2007) SODA – a Security-Oriented Software Devel-
opment Framework. SINTEF ICT. [Online]. Avail-
able: http://www.sintef.no/soda

[16] M. J. Ranum, “Thinking about firewalls,” in Proceed-
ings of Second International Conference on Systems
and Network Security and Management (SANS-II),
April 1994.




